The general parametrization for spacetimes of spherically symmetric Lorentzian, traversable wormholes in an arbitrary metric theory of gravity is presented. The parametrization is similar in spirit to the post-Newtonian parametrized formalism, but with validity that extends beyond the weak field region and covers the whole space. Our method is based on a continued-fraction expansion in terms...
We investigate the Cho-Maison magnetic monopole in the presence of gravity. Unlike 't Hooft-Polyakov monopole, this hypothetical particle is a topological offspring of the ElectroWeak theory with a mass estimated around 5-7 TeV. Our goal is to study solutions within a large family of extended Electrowek models coupled minimally or non-minimally to gravity and see what kind of space-time...
There is growing interest in the effects of the discs' self-gravity around black holes (BH), both from the theoretical point of view, as exact solutions of Einstein's equations, and from possible implications to black hole astrophysics. Here we apply the well known "displace, cut, and reflect" method, originally proposed by Kuzmin to construct analytical disk-galaxy models, to generate "black...
We interpret the cosmological constant as the energy of the vacuum, and under a minimum amount of assumptions, we show that it is deformed in the vicinity of a black hole. This leads us to reexamine the Kerr de Sitter solution. We provide a new solution, simpler and geometrically richer, which shows the impact of the rotation in form of a warped curvature. We carry out a detailed and exact...
In this talk, I analyse the stability of self-gravitating spheres in the context of gravitational cracking. Besides exploring the role played by the anisotropy in the occurrence of cracking, we also study the effect of the complexity factor recently introduced in Phys. Rev. D 97, 044010 (2018). The models under study correspond to anisotropic solutions obtained in the framework of the...