

XSPEC - Implementation of analytical models

Michal Dovčiak

Astronomical Institute Academy of Sciences of the Czech Republic Prague

X-ray data modelling of accreting black holes Hotel Belaria, Hradec nad Moravicí, Czech Republic $17^{th} - 25^{th}$ July 2021

Introduction

Information available in XSPEC manual Appendix C: Adding Models to XSPEC (https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node313.html)

- Create subroutine with the new XSPEC model
- Create description file for the model and its parameters
- Compile the model inside the XSPEC (once)
- Load the model library
- Use the model

Example I – power-law with sharp energy cut-offs – the subroutine

#include <math.h>

```
void pwlco(const double *ear, int ne, const double *param, int ifl,
           double *photar, double *photer, const char* init) {
int
    ie:
double e1. e2:
for (ie = 0; ie < ne; ie++){
  if ( ear[ie+1] <= param[1] ){</pre>
    photar[ie] = 0.:
   continue
  }else if ( ear[ie] <= param[1] ) e1 = param[1];</pre>
  else e1 = ear[ie];
  if (ar[ie] \ge param[2])
    photar[ie] = 0.;
   continue:
  else if (ear[ie+1] >= param[2]) e2 = param[2];
  else e2 = ear[ie+1]:
  if(param[0] != 1.)
    photar[ie] = ( pow( e2, -param[0] + 1. ) - pow( e1, -param[0] + 1. ) )
                / ( -param[0] + 1. );
  else photar[ie] = log( e2 / e1 );
```

return;

- ear energy array with ne+1 values for energy bin boundaries
- ne size of flux array
- param parameter values
- ifl the spectrum number being calculated
- photar photon flux array with ne values defined per energy bin, i.e. not per keV!
- photer photon flux error array with ne values
- init this string is read on initialization and available to the model during execution (optional)

Example I – power-law with sharp energy cut-offs – the description

Entry for a model description in lmodel.dat file:

pwlco	30.	1.0	De20	c_p	owlco a	dd 0 0	
PhoIndex		2.0	1.2	1.2	3.	3.	0.1
E0	keV	0.1	0.001	0.001	1.	1.	0.1
Ecut	keV	100.	10.	10.	1000.	1000.	10.

The first line for each model:

- the model name
- the number of parameters
- the low and high energies for which the model is valid
- the name of the subroutine to be called
- the type of model (add, mul, mix, or con, or acn)
- the flag to be set to 1 if model variances are calculated by modelfunc
- the flag to be set to 1 if the model should be forced to perform a calculation for each spectrum

Example I – power-law with sharp energy cut-offs – the description

Entry for a model description in lmodel.dat file:

pwlco	30.	1.0)e20	c_p	wlco a	dd 0 0	
PhoIndex		2.0	1.2	1.2	3.	3.	0.1
E0	keV	0.1	0.001	0.001	1.	1.	0.1
Ecut	keV	100.	10.	10.	1000.	1000.	10.

The remaining lines specify each parameter in the model:

- the parameter name
- optional units label
- the default parameter value
- hard min and soft min
- soft max and hard max
- fit delta

Example I – power-law with sharp energy cut-offs – the description

Entry for a model description in lmodel.dat file:

pwlco	30.	1.0	0e20	c_p	wlco ad	0 0 bt	
PhoIndex		2.0	1.2	1.2	3.	3.	0.1
E0	keV	0.1	0.001	0.001	1.	1.	0.1
Ecut	keV	100.	10.	10.	1000.	1000.	10.

Three special types of parameters can be used:

- scale parameter its name is prefixed with a *, it cannot be made variable and may be linked only to another scale parameter, only the initial value is given
- switch parameter its name is prefixed with a \$, it is not used directly but switches the model's mode of operation, it only has 2 fields: its name and an integer value
- periodic parameter P is added at the end of the line, if it tries to exceed its hard limits during the fit, it will be assigned a value within its limits: f(max + delta) = f(min + delta), f(min-delta) = f(max-delta)

Example II – model subroutine using FITS tables

```
#define REFSPECTRA "mvrefl.fits\0"
#define NPAR 3
extern void tabint(float* ear, int ne, float* param, int npar,
                   const char* filenm, int ifl, const char* tabtyp,
                   float* photar. float* photer);
void mvrefl(const double *ear. int ne. const double *param. int ifl.
            double *photar. double *photer. const char* init) {
      refspectra[12] = REFSPECTRA;
char
int
       ie:
float fl ear[ne+1], fl photar[ne], fl photer[ne];
float fl param[NPAR]={(float) param[0], (float) param[1], (float) param[2]};
const char* tabtvp="add":
double flux:
//Let's read and interpolate the FITS tables using internal XSPEC routine tabint
//Note that we do not use errors here
for(ie = 0; ie <= ne; ie++) fl ear[ie] = (float) ear[ie];</pre>
tabint(fl ear, ne, fl param, NPAR, refspectra, ifl, tabtvp, fl photar, fl photer):
//Let's e.g. renormalize to the total counts
flux=0.;
for (ie = 0: ie < ne: ie++) flux += fl photar[ie]:</pre>
for (ie = 0: ie < ne: ie++) photar[ie] = fl photar[ie] / flux:</pre>
return:
```

}

How to install and use local models

Installation in XSPEC:

the code is compiled inside XSPEC with the following command: initpackage mypackage Imodel.dat /path/to/mypackage

To use local models inside XSPEC:

- the package needs to be loaded:
 Imod mypackage /path/to/mypackage
- then any model from the package may be used, e.g.: mo pwlco