

Relativistic reflection models

Michal Dovčiak

Astronomical Institute Academy of Sciences of the Czech Republic Prague

X-ray data modelling of accreting black holes Hotel Belaria, Hradec nad Moravicí, Czech Republic $17^{\text{th}} - 25^{\text{th}}$ July 2021

- Overview of the physical and spectral system components
- Origin of the reflection spectra
- Relativistic effects
- Relativistically broadened line and reflection spectra
- KYN package of models

Physical components

Radio quiet AGN

X-ray binary system

Basic system components:

- ▶ black hole → curves the space-time
- **accretion disc** \rightarrow thermal radiation and relativistic reflection
- ► corona → primary X-ray radiation
- torus \rightarrow distant reflection
- others clouds, warm absorber, winds
 - ightarrow obscuration, absorption, reflection
- jet \rightarrow in radio loud AGN and hard state of XRBs

Radio loud AGN

Spectral components

Spectral components in radio quiet AGN:

- multicolour black body (not shown)
 - \rightarrow thermal disc emission
 - \rightarrow optical/UV big blue bump
 - \rightarrow diskBB, kerrd, kerrBB, KYNBB
- primary X-ray power-law emission
 - \rightarrow corona emission
 - \rightarrow index Γ , energy cut-offs E_0 and E_{cut}
 - \rightarrow optical depth τ , seed photon energy T_{bb} , electron temperature T_e
 - \rightarrow cutoffpl, compTT, compPS, nthComp, MONK
- distant reflection
 - \rightarrow e.g. by torus
 - ightarrow gauss, pexrav, pexriv, MYTorus
- relativistically blurred reflection
 - \rightarrow reflection from the accretion disc
 - \rightarrow diskline, laor, KYNrline, kerrdisk
 - \rightarrow KYNlpcr, relxil, KYNxillver, KYNstokes

Spectral components

Spectral components in radio quiet AGN:

- soft excess
 - \rightarrow comptonisation by warm corona?
 - \rightarrow blurred spectral lines due to ionised reflection?
- absorption
 - $ightarrow {tbabs}$, wabs, wndabs

Corona geometry and disc illumination

Muller (2004)

Auger effect and fluorescent K α iron line

iron atom before photo-ionization

iron atom after photo-ionization

Local re-processed disc emission

Spectral features:

- fluorescent emission and absorption lines and spectral edges
 - \rightarrow e.g. Fe K α and K β lines at 6.4 keV and 7.1 keV for neutral Fe
- Compton hump due to Compton recoil → 20 - 50 keV
- absorption
- ► soft excess at soft energies → forest of ionised spectral lines
 - \rightarrow below 1 keV
- dependence on ionisation
 - \rightarrow fully ionised disc resembles the original power-law radiation perfect reflector

Special relativistic effects

due to high velocity of the matter moving close to the black hole

- orbiting, falling into or being ejected from the centre
- \rightarrow depend on: direction of motion with respect to the observer
- observed effects:
 - Doppler shift shifts energy dependence of emitted radiation properties
 - aberration changes angles
 - emission angle, important if emission depends on direction
 - polarization angle

 \rightarrow **beaming – changes intensity** of radiation

time delay – important for variable emission, e.g. orbiting hot spots

General relativistic effects

- due to high gravity of the compact central body
 - \rightarrow depend on: system inclination angle, black hole mass and spin
- observed effects:
 - gravitational redshift shifts energy dependence of emitted radiation properties and changes intensity of radiation
 - light bending photon trajectory is heavily bent close to the BH due to strong gravity and dragging of space-time due to the BH rotation
 - observer can see behind the black hole
 - source of radiation illuminates regions "behind the corner"
 - changes emission angle, important if emission depends on direction
 - \rightarrow lensing effect changes intensity of radiation
 - rotation of polarization angle
 - time delay important for variable emission
 - orbiting hot spots
 - reverberation, i.e. "reflection" from different parts of the system

Relativistic broadening

$$G(g) = \sqrt{\frac{g_+ g_-}{(g_+ - g)(g - g_-)}} g^2 \cos[\theta_{\theta}(g)] \ell(g) \left[\frac{\partial \psi}{\partial \varphi}(g)\right]^{-1}$$

$$g = 1 - \frac{v_{k}}{c} \sin \theta_{0} \sin \varphi$$

$$\theta_{e} = \theta_{0} \quad \ell = 1 \quad \psi = \varphi$$

$$g = \left[\gamma \left(1 + \frac{v_{k}}{c} \sin \theta_{0} \sin \varphi\right)\right]^{-1}$$

$$\theta_{e} = \theta_{0} \quad \ell = 1 \quad \psi = \varphi$$

$$g = \left[U_{k}^{t} \left(1 - \Omega_{k} \sin \theta_{0} \alpha\right)\right]^{-1}$$

$$\cos \theta_{e} = \sqrt{\beta^{2} + (\alpha^{2} - a^{2}) \cos^{2} \theta_{0}}/r$$

$$\ell = \frac{dS_{0}}{dS_{loc}}$$

$$\sin \psi = \frac{2(\alpha - \overline{\alpha})}{\alpha_{+} - \alpha_{-}}$$

$$F(g) = \int_{r_{in}}^{r_{out}} dr \, r \, R(r) \sum_{j=1}^{2} G_{j}(g) \, M_{j}(\mu_{i}, \mu_{e})$$

Transfer function

$$\Delta I = \int_{\Sigma_{\alpha,\beta}} d\alpha d\beta \, \underline{g^{\gamma}} \, I_{\text{loc}}(\alpha,\beta)$$
$$\Delta I = \int_{\Sigma_{r,\phi}} r dr d\phi \, \underline{g^{\gamma-1} \mu_{\text{e}} \ell} \, I_{\text{loc}}(r,\phi)$$

transfer function G

$$g = \frac{E}{E_{\text{loc}}}$$

$$\mu_{\text{e}} = \cos \theta_{\text{e}}$$

$$\ell = \frac{dS_{\text{o}}}{dS_{\text{loc}}^{\perp}}$$

$$\frac{d\alpha d\beta}{r dr d\phi} = \frac{dS_{\text{o}}}{dS_{\text{loc}}^{\perp}} \times \frac{dS_{\text{loc}}}{dS_{\text{loc}}} \times \frac{dS_{\text{loc}}}{dS} = \frac{\ell \mu_{\text{e}}}{g}$$

Energy shift

- $\rightarrow~$ shifts spectral features among energy bands of interest
- \rightarrow due to Doppler shift and gravitational redshift
- \rightarrow disc (*x*, *y*-coordinates) versus detector (α , β -coordinates)
- ightarrow bending and dragging of photon path by rotation

Emission angle

- $\rightarrow~$ important for non-isotropic emission
- $\rightarrow~$ due to aberration and light bending
- \rightarrow critical point photons emitted perpendicularly to the dics
- ightarrow photons emitted parallelly with the dics close to the black hole

Change of polarization angle and transfer function

- \rightarrow important for the total observed radiation from the whole disc surface
- $\rightarrow~$ polarization angle changes due to aberration and light bending
- $\rightarrow~$ emission is amplified due to beaming and lensing
- \rightarrow depolarization around the critical point

Emission directionality

- Kα line emission directionality re-processing numerically computed for neutral disc with Monte Carlo multi-scattering code NDAR (Dumont, Abrassart & Collin, 2000)
- enhanced emission close to the black hole due to limb brightening and small incident and emission angles near the horizon – another reason for steeper emissivity
- Svoboda et al (2009), García et al (2014)

Spin measurements

spin measurements possible only for a very compact corona situated very close to the black hole

Spectrum dependence on radial ionisation profile

example spectra for different radial ionisation profiles

KYN package of models

- relativistic fluorescent line models:
 - KYNrline broken power-law emissivity
 - KYNrlpli lamp-post geometry
- relativistic convolution models:
 - KYNconv broken power-law emissivity
 - KYNconvlp lamp-post geometry
- relativistic reflection models:
 - KYNIpcr lamp-post geometry, neutral disc (local emissivity computed by NOAR)
 - KYNrefionx lamp-post geometry, ionised disc (based on REFLIONX)
 - KYNxillver lamp-post geometry, ionised disc (based on XILLVER)
- relativistic thermal radiation models:
 - KYNrefionx lamp-post geometry, ionised disc (based on REFLIONX)
 - KYNxillver lamp-post geometry, ionised disc (based on XILLVER)

KYN parameters

Model	kynrefionx<1> Source No.: 1 Active/Off					
Model	Model	Component	Parameter	Unit	∨alue	
par	comp					
1	1	kynrefionx	a/M	GM/C	1.00000	+/- 0.0
2	1	kynrefionx	theta_o	deg	30.0000	+/- 0.0
3	1	kynrefionx	rin	GM/c^2	1.00000	frozen
4	1	kynrefionx	ms		1	frozen
5	1	kynrefionx	rout	GM/C^2	400.000	frozen
6	1	kynrefionx	phi	deg	0.0	frozen
7	1	kynrefionx	dphi	deg	360.000	frozen
8	1	kynrefionx	M/M8		1.00000	+/- 0.0
9	1	kynrefionx	neight	GM/C^2	3.00000	frozen
10	1	kynrefionx	Phoindex		2.00000	frozen
11	1	kyprefionx	L/Ledd		1.00000E-03	+/- 0.0
12	1	kyprefionx	depetty		1.00000	trozen
14	1	kyprefiony	den prof		1.00000	+/- 0.0
15	1	kyprefiony	aen_pror		1.00000	+/- 0.0
16	1	kynrefiony	alpha	GM/cA2	-6.00000	+/- 0.0
17	1	kynrefiony	heta	GM/cA2	-0.00000	+/- 0.0
18	1	kynrefiony	reloud	GM/cA2	0.0	+/- 0.0
19	1	kynrefionx	zshift	011/01/2	0.0	frozen
20	1	kynrefionx	limb		0.0	frozen
21	ĩ	kynrefionx	tab		2	frozen
22	1	kynrefionx	SW		2	frozen
23	1	kynrefionx	ntable		80.0000	frozen
24	1	kynrefionx	nrad		500.000	frozen
25	1	kynrefionx	division		1.00000	frozen
26	1	kynrefionx	nphi		360.000	frozen
27	1	kynrefionx	smooth		1.00000	frozen
28	1	kynrefionx	nthreads		2.00000	frozen
29	1	kynrefionx	norm		1.00000	+/- 0.0

- physical parameters describing the system (spin, inclination, etc.)
- emission from a spot (section of the accretion disc)
- obscuration by a spherical cloud
- numerical parameters setting the computational grid for the integration

(influences the speed of the code)

- X-ray reverberation models in the lamp-post geometry:
 - KYNrefrev based on REFLIONX tables
 - KYNxilrev based on XILLVER tables

New model for polarisation by reflection for AGN – KYNSTOKES

Local polarisation degree:

- emission spectral lines are unpolarised
- absorption spectral lines are polarised
- Compton hump is mildly polarised due to scattering
- **absorption** increases polarisation
- soft excess at soft energies has very low polarisation
- higher ionisation induces low polarisation degree

Spectral energy distribution model for AGN - KYNSED

Spectral energy distribution model:

- thermal emission of the accretion disc
- primary X-ray emission from the corona
- reflection from the accretion disc
- includes interaction of the disc with the corona
 - \rightarrow disc provides seed photons to corona (corona cooling via Compton scattering)
 - \rightarrow disc provides energy to corona (corona heating)
 - \rightarrow corona illuminates the disc
 - $\rightarrow \text{disc reflects}$
 - \rightarrow disc partly absorbs (disc heating)
- ► $M_{\rm BH} = 5 \times 10^7 \, M_{\odot}, \, \theta_{\rm o} = 40^{\circ}, \, \dot{m}_{\rm Edd} = 0.1, \, L_{\rm ext}/L_{\rm acc} = 0.5, \, h = 10 \, r_{\rm g}, \, \Gamma = 2 \, \text{and} \, E_{\rm cut,obs} = 300 \, \text{keV}$

How to install and use the models

Required files:

- source files in the main repository directory.
- KY tables KBHtables80.fits and KBHlamp80.fits
- ▶ other FITS tables for re-processing in the accretion disc, e.g. REFLIONX, XILLVER

Installation in XSPEC:

the code is compiled inside XSPEC with the following command: initpackage kyn Imodel-kyn.dat /path/to/KYN

To use the KYN models inside XSPEC:

- the package needs to be loaded: Imod kyn /path/to/KYN
- the directory including the KYN package needs to be set: xset KYDIR /path/to/KYN
- then any model from KYN package may be used, e.g.: mo kynxillver

Note: One may need to increase the stack size by one of the following commands (in case of segmentation fault):

- ulimit -s unlimited
- ▶ ulimit -s 65532