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INTRODUCTION

Disks in astrophysics



Saturn rings

credit: Galieo Galilei



Galactic disks



Protoplanetary disks

Basic properties:
I Low luminosity
I Solar-mass stars: M∗ ∼ M�
I Temperature: T ∼ (10 − 103)K
I Self-gravitating→ planet formation
I Disk size: Rout ∼ (1011 − 1015)cm

...Artist’s impression & HST



Cataclysmic variables

Basic properties:
I Close stellar binaries (primary is white dwarf)
I MWD ∼ M�, Rout ∼ (109 − 1010)cm, T ∼ (103 − 107)K

outbursts→ Dwarf novae

...Artist’s impression



Cataclysmic variables

Observational evidence:

Frank, King & Raine



Active Galactic Nuclei & Quasars
Basic properties:
I Supermassive black-holes:

M• ∼ (108 − 1012)M�
I Largest accretion disks:

Rout ∼ (106 − 1011)(M•/M�)cm
I intraday variability
I Temperature: T ∼ (102 − 105)K
I Cosmologic distances

Unified model:
I Radio galaxies
I Seyfert galaxies I, II
I Blazars

... Centaurus A, Urry & Padovanni



X-ray binaries & µquasars

... Artist’s impression & Mirabel et al.

Basic properties:
I Stellar mass black-holes:

M• ∼ (3 − 20)M�
I Disk sizes:

Rout ∼ (106 − 1011)cm

I ms variability
I Temperature:

T ∼ (103 − 107)K
I Relativistic jets
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Gamma-Ray Bursts



Accretion power

rin

r

I Force balance during inspiral:

mv2

r
≈ G

mM
r2 ⇒ v2 ≈

GM
r

I Energy balance:

E = Ekin+Epot =
1
2

mv2−G
mM

r
≈ −

GMm
2r

I Energy loses during accretion:

∆E = E(∞) − E(rin) ≈
GMm
2rin

I Black holes: rin ≈ rg ∼ GM/c2 ⇒ ∆E ∼ mc2

Realistically: ∆E = ηmc2, where η is accretion efficiency.



Accretion power

Efficiency of energy generators in nature:

I Chemical burning: η < 0.000 00001
I Nuclear burning: η < 0.01
I Disk accretion onto counter-rotating BH: η = 0.04
I Disk accretion onto non-rotating BH: η = 0.06
I Disk accretion onto rotating BH: η = 0.42

Black hole accretion is a POWERFUL source of energy!



Luminosity
Is there a limit on the luminosity of an object of a given mass?
Stars:

Frad
Fgrav

M

Frad ≈ Fgrav, Frad =
σ

c
L

4πR2 , Fgrav =
GMm

R2

L ≤
4πGMmc

σ
≡ LEdd

Disks:
I Rotation acts against radiation
I No principal limit

Fgrav

M

Accretion disks are the most LUMINOUS objects in the universe!



GENERAL RELATIVITY AND BLACK HOLES

i.e.,

what you need to know for accretion...



Black holes

In strong gravitational fields the space time is warped and twisted

I Space time geometry of non-rotating BHs is described by the
Schwarzschild metric:

ds2 = −

(
1 −

2M
r

)
dt2 +

(
1 −

2M
r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2

I Singular at r = 2M (horizon) and r = 0 (singularity)

C

C

1

2

I Euclidean geometry does not
apply:

∆r >
C2

2π
−

C1

2π



Black holes

“The black holes of nature are the most
perfect macroscopic objects there are in

the universe:
the only elements in their construction
are our concepts of space and time.

And since the general theory of relativity
provides only a single unique family of
solutions for their descriptions, they are

the simplest objects as well.”

S. Chandrasekhar, The Mathematical
Theory of Black holes



Circular orbits in black-hole spacetimes

Innermost stable circular orbit (ISCO) at rms = 6M
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→ d`K/dr < 0 for r < 6M ⇒ Region of unstable orbits.



Relativity without relativity

Paczynski’s trick: pseudo-Newtonian potential

Can we invent a Newtonian potential that mimics GR effects?

Even a small ‘perturbation’ of a Newtonian potential gives a big
change:

Φ(r) = −
GM

r − rSchw
, rSchw =

2GM
c2

I Gives a correct formula for `K in Schwarzschild spacetime:

`K =

√
GMr

1 − rSchw
r

I Gives acceptable values for the epicyclic frequencies.
I Unsuitable for rotating BHs (gravito-magnetism, ergosphere)



Central question:

How to feed black hole?



Objects with zero angular momentum
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Sending an object with zero angular momentum is easy



Rotating objects
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Effective potential: Gravity + centrifugal force



Rotating objects
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Rotating objects
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Increase of energy does not help (centrifugal barrier)



Rotating objects
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Rotating objects
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This process finish at marginally stable orbit⇒ free fall



Essential ingrediences
I Fluid (presure)
I Angular momentum transport (viscosity)
I Energy balance (removing mechanical energy)

⇒ Disk accretion may be described by Navier-Stokes equations

mass angular
momentum

motion

energyenergy

radiative
pressure

gravity

Stars Disks

⇒ Disk accretion is essentially 3D problem



STANDARD PICTURE

Shakura-Sunyaev cold thin disk model



Navier-Stokes equations
Radial momentum equation:

vr ∂vr
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the vertical one:
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the continuity equation:
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and the energy equation and equation of state:

Tvr ∂s
∂r

= Q+
visc − Q−rad , p = pgas + prad = RmρT + aT4 .



Shakura-Sunyaev disk model
Radial momentum equation (Keplerian flow):
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the azimuthal one (radial transport of angular momentum):
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the vertical one (hydrostatic balance):
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the continuity equation (mass conservation):

1
r
∂
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(rρvr ) +

∂

∂z
(ρvz ) = 0

and the energy equation (local balance) and equation of state:

Tvr ∂s
∂r

= Q+
visc − Q−rad , p = pgas + prad = RmρT + aT4 .

Shakura & Sunyaev (1973)



Easy solution
Two equations are algebraic:

I Radial Euler equation:
Ω(r) = ΩK(r)

I Vertical Euler equation:

H(r) =
cs(r)

rΩK(r)

Two equations are easily integrable:

I Continuity equation:

d
dr

(rΣv r ) = 0 ⇒ rΣv r = const ≡ −
Ṁ
2π

... accretion rate

I Azimuthal equation:

d
dr

(rΣv r`) −
d
dr

(
r3νΣ

dΩ

dr

)
︸       ︷︷       ︸
G/(2π)

= 0 ⇒ −Ṁ`K − G = const ≡ −Ṁ`∗

When ` = `∗ ⇒ G = 0 ... zero torque



Viscous dissipation & radiative cooling

Energy balance:
I Rate of energy production (viscous heating):

Q+ =
G

8πr
dΩ

dr

I Rate of energy loss (radiative cooling):

Q− = σSBT4

Thermal equilibrium Q+ = Q− gives the local temperature:

T(r) =

[
−

Ṁ
4πσSB

1
r

dΩ

dr
(`K − `∗)

]1/4

Local temperature in the disk is independent of the form
of the viscosity



Where is the zero-torque point (what is `∗)?

Accretion torques are mediated throuhout the disk

(inner annuli act on the outer ones)
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After reaching rms:
I no more centrifugal support

(plunging)

I flow becomes quickly transonic

I no causal connection from
supersonic flow

I no mediated viscous torques

Assumption: at rms the applied torque is zero.

`∗ = `K(rms) ... zero-torque boundary condition

BUT: Other torques, causality in viscous flow, etc...



Spectra
Local spectra of the disk are given by the Planck law:

Iν(r) = Bν [T(r)] =
2hν3

c2
[
ehν/kT(r) − 1

]
Disk spectra after integrating over the surface:

ν
1/3

ν
2

Raleygh-

Jeans

Wien

intermediate 

range

... see talk of Michal Bursa



Radial structure
For other physical quantities viscosity prescription needed.

Shakura & Sunyaev (1973):

τ
r̂ φ̂
visc = αp ...α-viscosity prescription

Radial structure (radiation-pressure dominated disk):

h = (1.59km) (f ṁ)

v r = (1.16 × 108m/s)αm−2(f ṁ)2r̂−5/2

ρ = (0.0291kg/m3)α−1m(f ṁ)−2r̂3/2

Tc = (4.96 × 107K)α−1/4m−1/4r̂−3/8

where

m ≡
M
M�

, ṁ ≡
Ṁ

1014kg/s
, r̂ ≡

r
rg
, f = 1 −

√
rms

r



Unphysical singularities at inner edge
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... Horak & Kluzniak (2021), Penna+2012: Regularization vr = cs |ms



Shakura-Sunyaev (1973) model

A fully relativistic version by Novikov & Thorne in the same year



Applications

I Protoplanetary disks, layered disks with dead zones,...
I Measuring black-hole parameters (kerrBB, diskBB)

McClintock et al. (2013)



Applications
Consistent result in a reasonable luminosity range!
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measuring the inner of the disk in LMC X3 (McClintock et al. 2013)



More advanced models

Angular momentum transport



Nature of the angular momentum transport

Viscosity?

Conditions in the accretion disks at r ∼ 1010cm:
I Temperature: T ∼ 1010K
I Density: n ∼ 1016cm−3

I Thermal velocity: 〈v2〉1/2 ∼ 106cm
I Particle mean-free path (ionized gas):
λ = k 2T2/(πe4n) ∼ 103cm

I Kinematic viscosity: ν ∼ 103cm2sec−1

This gives an inflow radial velocity of v r ∼ 3ν/2R ∼ 5cm/year.

Molecular viscosity too low



Nature of the angular momentum transport

Turbulence!

Enhanced momentum transport in turbulent flows:

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · (ρvv) = −∇p − ρ∇Φ,

Separation of mean and fluctuating quantities:

ρ = ρ̄ + ρ̃, ρ̄ ≡ 〈ρ〉, v ≡ v̄ + ṽ, v̄ ≡
1
ρ̄
〈ρv〉.

Equations for mean flow:

∂ρ̄

∂t
+ ∇ · (ρ̄v̄) = 0,

∂

∂t
(ρ̄v̄) + ∇ · (ρ̄v̄v̄) = −∇p̄ − ∇ · R − ρ̄∇Φ,

where
R ≡

〈
ρṽṽ

〉
... Reynolds stress



Back to Shakura-Sunyaev prescription

α-viscosity as a prescription for Reynolds stress:

R ≡
〈
ρṽṽ

〉
∼ ρc2

s

(
ṽ
cs

) (
ṽ
cs

)
Now, ρc2

s ∼ p and |ṽ | < cs:

R r̂ φ̂ = αp

Our ignorance is parameterized by the parameter α:
I α < 1 (subsonic turbulence)
I α may be function of r



Turbulence driving mechanism?

I Keplerian HDYN flows are boringly stable.
I Local instability discovered by Balbus & Hawley in 1993

Magneto-Rotational Instability



Turbulent cascade



More advanced models

Transonic flows with advection

Q+
visc − Q−rad = Tv r ∂s

∂r
≡ Q−adv



Shakura-Sunyaev disk model
Radial momentum equation:
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the azimuthal one (radial transport of angular momentum):

vr

r2
∂

∂r

(
r2Ω

)
+vz ∂Ω

∂z
=

1
r3ρ

∂

∂r

(
r3η

∂Ω

∂r

)
+

1
ρ

∂

∂z

(
η
∂Ω

∂z

)
,

the vertical one (hydrostatic balance):
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the continuity equation (mass conservation):
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and the energy equation (including advection) and equation of state:

Q+
visc − Q−rad = Tvr ∂s

∂r
≡ Q−adv p = pgas + prad = RmρT + aT4 .



Slim accretion disks
I Probably suitable for higher luminosities
I Advection term included in the equations: Q+ = Q−rad + Q−adv
I Optically thick, geometrically ‘slim’, H/r . 1
I Global transonic solution: zero-torque point r∗ at black-hole

horizon

Abramowicz, Lasota, Czerny, Suszskiewicz, Sadowski,...



ADAFs
Advection Dominated Accretion Flows

I Low-luminosity disks
I Advection term dominant in the equations Q+ ≈ Q−adv
I Extended structures (almost spherical shape)
I Significant radial inflow velocity
I Many other versions correcting the original model (RIAF,

ADIOS,...)

Narayan, Yi, Abramowicz, Chen, Igumenschev, Kato, ...



Accretion disk ZOO

credit: A. Sadowski (2009)



BTW: What if we keep all the terms?

Analytic perturbative solution of Kluzniak & Kita (1995): backflows
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Still not complete picture

CORONAE



Corona contribution in different spectral states

Zdziarski et al. (2003) Malzac et al. (2006)

2 spectral states, 3 spectral components (disk, corona, reflection):
I LHS: Weak disk component (BB and reflection),

thermal comptonization in the corona
I HSS: Strong disk component and reflection,

non-thermal comptonization in the corona.



Different geometries

a b

e f

c d

g h

Poutanen et al. (2017)

rH
H

Rc

Ursini et al. (2020)

I Point-like or extended
I Patchy or continuous
I Static or variable



Self-consistent modelling
The three components are not independent:
I Disk provides seed photons for Comptonization in the corona.
I Irradiation of the corona causes cooling of corona.
I Upscattered photons from the corona are primary radiation for

the reflection and (additional) heating of the disks

Energetic balance (Haardt+1991):

(1 − f)Pg + (1 − a)ηLC = Ls

fPg + Ls = ALs

I f is the heating of corona
I f . 1 to explain observations.

Considering mutual effects may put strong constraints on both,
geometry and variability of the corona


