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‘WHAT HAVE 
MAGNETIC 

MONOPOLES EVER 
DONE FOR US?’



MONOPOLE IN HEP-TH
• Explains quantization of electric charge
• QCD confinement = dual color superconductor
• Avatar of Grand Unification of forces
• Last great prediction of the Standard Model
• SUSY, string theory, integrability
• …

MONOPOLE IN GR-QC

• Source of “hairy” black holes solution
• Inflation & cosmology
• …



THIS TALK:
• We show how using the method of field dressing we can estimate 

the mass of the magnetic model within Grand Unification Theory 
(GUT) and in Standard Model (SM).

• We explore the vast landscape of models, where the monopoles 
are BPS solutions and provide exact solutions. 

• We describe a way of generating monopole solutions using a 
novel notion of duality => rescuing/reinterpreting singular 
solutions.

• We want to extend this game to General Relativity and look for 
new exact solutions describing magnetically charged compact 
objects.



WORK IN PROGRESS



DIRAC MONOPOLE



DIRAC MONOPOLE
Let us consider a point magnetic charge

qm

Gauge fields can be defined 
everywhere except on a line 

stretching from the monopole 
to infinity

 — the Dirac string

Can we somehow define 
the vector potential?
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Yes. In fact, in infinitely many ways.



DIRAC QUANTIZATION CONDITION

The potentials leads to different Schroedinger equations
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But the physics must be same. In particular the wave-functions
must be related by a gauge transformation
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The wave-function must be also single-valued
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HOW TO GO BEYOND CLASSICAL 
ELECTROMAGNETISM?

electric monopole magnetic monopole

∫ d 3x
1
2

⃗E 2 = ∞ ∫ d 3x
1
2

⃗B 2 = ∞

Classical EM energy diverges:

Quantum effects dominate
for an electron

rcl ∼e2λC ≪ λC rcl ∼q2λC ∼ 1
e2 λC ≫ λC

Natural descriptions:

QFT Solitons

But monopoles can be
treated semi-classically

S Duality

EM Duality



THE METHOD OF FIELD DRESSING
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FIELD DRESSING
ℒ = − σ2

4e2v2 FμνFμν + 1
2 ∂μσ∂μσ

Theoretician’s Gedanken’s laboratory: 
coupling a magnetic monopole with a various 

fields through field-dependent permittivity:

σ
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σ = v + δσ ( −∇2 − 1
e2v2r4 )δσ = 1

e2vr4

Naked monopole 
(unstable)

δσ = −v

Dressed monopole
(stable)

The exact 
solution for the 

condensate:

σ(r) = ve− 1
evr

EM energy is 
made finite!

EEM = π
e2

∞
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This leads to a spontaneous condensation of the fields around the monopole 



HOW TO WEIGH A MONOPOLE LIKE A 
THEORETICIAN

ℒ = − 1
4e2 FμνFμν

F ∼ q2

r2

Monopoles are not static in the vacuum (duh)

ℒ = − 4e2 FμνFμν

However, coupling the monopole to a field via field-dependent permittivity will modify 
the charge and add an attractive force. The monopoles become `dressed’.

+ 1
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`Weighing’ is simply measuring the amount of the condensate necessary to strike the 
balance of forces as    λ → 0
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A LANDSCAPE OF DRESSED MONOPOLES

Energy density can be completed into a perfect square

Thus the mass of the dressed monopole is �xi
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The punchline:
If we know the vev of the condensate
we know the mass of the monopole:

For SM Higgs: v = 246 GeV
M ≈1 −10 TeV

Example:



SOME OTHER EXACT SOLUTIONS
@i� +

1

e
h0��/v

�
Bi = 0 h0(x) = xn

�[n] = v

✓
1 +

n� 1

ver

◆� 1
n�1 E [n] = 1

e2r2
r

2
n�1

✓
r + n�1

ve

◆ 2n
n�1

0.0 0.2 0.4 0.6 0.8 1.0
r

0.2

0.4

0.6

0.8

1.0

v=1, e=1

σ[n=2] σ[n=5] σ[n=10]

0.2 0.4 0.6 0.8 1.0
r

0.2

0.4

0.6

0.8

v=1, e=1

ℰ[n=2] ℰ[n=5] ℰ[n=10]

Bi = �xi

r3



GRAVITY = FIELD DRESSING IN SPIN 2 FIELD

Coupling with gravity also introduce a long range attraction 

−GM2

r2F ∼ Q2

r2

ℒ = − 4e2 FμνFμν +
−g

16πG
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−g
gg g

g g
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The balance is struck when M ≈Q/ G = QMP ∼1019 GeV
This estimate is spectacularly wrong => gravity is not a fundamental `condensate’  

gg g
g g

g g
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Depending on the strength of the ‘dressing` either black hole or naked singularity is 
formed:
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CLOTHES MAKES THE 
MONOPOLE
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DRESSING THE MONOPOLE IN VECTOR FIELDS:

ℒ = − 1
4e2 FμνFμν −1

2 |DμWν −DνWμ |2 + i
2e

(W̄μWν −W̄νWμ)Fμν

Let’s throw a Dirac monopole into a medium with a neutral scalar and charged 
vector field. 

+ λe2

4 (W̄μWν −W̄νWμ)2 + m2(σ) |Wμ |2 + 1
2 ∂μσ∂μσ −V(σ)

If the value of a dipole moment of W is tuned just right 
and the self-coupling and mass is
the symmetry group magically enhances from U(1)
into a spontaneously broken SU(2) gauge group with an
adjoint triplet 

λ = 1 m(σ) = eσ

ℒ = − 1
2e2 Tr[FμνFμν]+ Tr[DμΣDμΣ] −V(Σ)

The Dirac monopole becomes 
a regular solution =  a 

topological soliton!
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i = −εij3

xj

r(r + z) Ai = −1
2 (1 −K(r))εijk

xjσk

r2

Singular gauge
transformation

K. Lee, E. Weinberg, 1994
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WEIGHING GUT MONOPOLES IN THE 
LANDSCAPE OF BPS MODELS

The strategy is now the same: find BPS limit and `weigh’ the condensate:

ℒ = −f1(σ)
2e2 Tr[FμνFμν] −f2(σ)

2e2 Tr[FμνΣ]2 + f3(σ)Tr[DμΣDμΣ] σ = 1
v2 Tr[Σ2]

In the BPS limit, the mass is fixed entirely by topology: M = 4πv
e

We have found novel solutions 
for specific choices of above f’s

for hollow shells
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EMBEDDING THE MONOPOLE IN THE STANDARD 
MODEL: CHO-MAISON MONOPOLE

ℒ = − 1
4e2 FμνFμν − 1

2e2 |DμWν −DνWμ |2 + i
2e2 (W̄μWν −W̄νWμ)Fμν

Surprisingly, the Dirac monopole can be incorporated easily into SM by adding 
another neutral vector field (Z boson) 

+ λ
4 (W̄μWν −W̄νWμ)2 + m2(σ) |Wμ |2 + 1

2 ∂μσ∂μσ −V(σ)

If we tune the values as
the symmetry group is enhanced into a spontaneously
broken SU(2)xU(1) gauge group = SM!

λ = sin(θW)−1 m(σ) = eσ/2

ℒ = − 1
2g 2 Tr[FμνFμν] + 1

4g ′�2 BμνBμν + |DHμ |2 −V( |H | )

The Dirac monopole becomes  remains singular in the U(1) group 
but otherwise regular = hybrid between Dirac and SU(2) monopole!

+ 1
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The spherical symmetric ansatz:
H =

vp
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THE TOPOLOGY OF THE CHO-MAISON MONOPOLE
The standard argument for why monopole cannot exist in SM was based on 
triviality of the second homotopy group π2(SU(2)xU(1)/U(1)) ∼π1(SU(2)) = {}

However, Cho and Maison (1997) found a topological solution based on the 
non-trivial second homotopy group of the normalized Higgs field, which is a CP1 
coordinate: π2(ℂP1) ∼π2(SU(2)) = ℤ
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Cho and Maison realized that in the 
Electroweak theory the mass of the 

monopole is divergent!
Mmon =

2⇡

g0 2

1Z

0

dr

r2
+ finite terms

This can be cured by considering 
theories beyond SM with field 

dressing

WEIGHING THE CHO-MAISON MONOPOLE
Cho & Maison, Phys. Lett. B391 (1997)

Cho, Kim & Yoon, Eur. Phys. J. C (2015)

Later, the estimated was lowered 
by considering more appropriate 
function of the Higgs that take 

into account experimental bounds 
on H to 2 photon production 

Ellis, Mavromatos & You, Phys. Lett. B (2016)

f( |H | ) = 5 ( H
v )

8
−4 ( H

v )
10

− 1
4g 2 B2

μν → − |H |8

4g 2 B2
μν

Mmon ≈7.2 TeV

Mmon ≈5.5 TeVStudying the BPS Electroweak 
monopoles, we were able to 

obtain a lower bound:
Blaschke, Beneš, PTEP (2018)

Mmon ≥ 2.7 TeV



THE BPS MASS

The BPS mass can be shown to lie within a range

M = 4⇡v
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Thus, the mass of the BPS Cho-Maison monopole is bounded both 
from bellow and from above  
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The most general BPS equation for Cho-Maison monopole:
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Some exact solutions:



Let us consider most general SU(2)xU(1) theory supporting a monopole

BROADER LANDSCAPE AND DUALITY

ℒ = −f3(ρ)2

2g 2 Tr[FμνFμν] −f4(ρ)2

4g ′�2 BμνBμν + f ′�2
1 (ρ) | ξ̃†DμH |2 + f ′�2

2 (ρ) |ξ†DμH |2

Asymptotically, we want to have the SM: f′ �1,2(1) = f3,4(1) = 1

If we further demand that the model is well-defined in 
the limit of large Higgs values, i.e. f′ �1,2(∞) = 0 f3,4(∞) < ∞

we can introduce a natural concept of duality
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This duality allows to transform singular solutions (in the Higgs condensate) to 
regular ones! Hence, many solutions that have been deemed unworthy can be saved!

ξ̃ = iσ2ξ*



OUTLOOK

• We want to explore this duality further and look for integrable 
theories.

• Coupling to gravity = new source of `hairy’ black hole solutions. 
• Fermion condensates and Rubakov-Callan-like effects in EW 

theory.
• …
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