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I. Electrically charged black hole
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ered as embedded into an external, asymptotically uni-
form magnetic field [25]. The rotating Kerr black hole
can change the structure of the asymptotically uniform
magnetic field and an additional electric field will appear
due to the e↵ect of dragging of inertial frames. In the
presence of an external magnetic field, the trajectories of
charged particles may have a chaotic behavior [26–31].
In Refs. [32–41], authors have made e↵orts to determine
and analyze the structure of the spacetime by studying
the motion of test particles and following their orbits near
black holes.

The study of magnetic dipoles around black holes in
the presence of a magnetic field may be also consid-
ered as a tool of testing the spacetime structure around
gravitational compact objects. The first pioneering at-
tempts to analyze the magnetic dipoles motion around
Schwarzschild and Kerr black holes immersed in exter-
nal magnetic fields have been made in Refs. [42, 43].
Particularly, the magnetic dipole motion around non-
Schwarzschild black holes with nonvanishing deformation
parameter in the presence of a magnetic field has been
studied in [44]. Magnetic dipole collisions near rotating
black holes in quintessence have been considered in [45].
Acceleration of magnetic dipoles near gravitational com-
pact objects in the presence of an external magnetic field
have been explored, e.g. in Refs. [46–49] for the di↵erent
modified gravity models. In our recent works, we have
studied the magnetic dipole motion in conformal gravity
and modified gravity models [50, 51]. For the review of
studies of the electromagnetic field around black holes in
the presence of an external, asymptotically uniform, and
dipolar magnetic field we refer the readers to Refs. [52–
79].

In this paper, we plan to study the charged and mag-
netic dipoles dynamics near an electrically and magnet-
ically charged Kerr-Sen black hole. The paper is orga-
nized as follows: in Section II, we have studied charged
particle motion around electrically charged stringy black
holes. Section III is devoted to the dynamics of the
magnetic monopole around magnetically charged stringy
black holes. We explore the magnetic dipole motion
around magnetically charged stringy black holes in Sec-
tion IV. Sections V and VI are devoted to the main re-
sults on possible astrophysical applications and the sum-
mary of the obtained results, respectively.

We use geometrized unit G = c = 1, (-,+,+,+) is the
signature of the spacetime, and Greek (Latin) indices run
0,1,2,3 (1,2,3).

II. CHARGED PARTICLE MOTION AROUND
ELECTRICALLY CHARGED STRINGY BLACK

HOLE

In this section we study of charged particle motion
around electrically charged static stringy black hole de-

scribed by the spacetime metric given by [5]
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where b = Q
2
/2M with Q being electric charge and M

is the total mass of a black hole. One can easily find the
event horizon radius from the relation N(r) = 0 as

rh = 2(M � b) . (2)

It is clearly seen that the horizon vanishes for extreme
case when bext = M or Qext =

p
2M . Four potential of

an electric field around a black hole takes a form
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(
�Q

r

✓
1 +

2b

r

◆�1

, 0, 0, 0

)
. (3)

The components of an electric field observed by ob-
server with four velocity u

↵ are defined as

E↵ = F↵�u
�
, (4)

where F↵� = A�;↵ � A↵;� is a tensor of electromagnetic
field, semicolon denotes the covariant derivate. The four
velocity of the proper observer is defined as

u
↵ =

0

@
s
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M(r � 2M) +Q2
, 0, 0, 0

1

A , (5)

and the orthonormal components of an electric field take
the following form

E
r̂ =

M
2
Q

(Mr +Q2)2
, E

✓̂ = E
�̂ = 0 , (6)

which shows that the electric field is indeed radially di-
rected as assumed. One can easily check that in the New-
tonian limit (M/r ! 0) the above expression reduces to

E
r̂ =

Q

r2
, (7)

being consistent with the Reissner-Nordström case in the
weak field approximation.
We use Hamilton-Jacobi equation of motion to derive

charged particle trajectories which reads as

g
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, (8)

where q andm are the electric charge and mass of the test
particle, respectively. Taking into account symmetrical
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where q andm are the electric charge and mass of the test
particle, respectively. Taking into account symmetrical
properties of the space-time the action of test particle S

in (8) reads

S = �Et+ L�+ S✓ + Sr , (9)

where E and L are the energy and angular momentum
of the charged particle. We will use the specific energy
E = E/m and specific angular momentum L = L/m for
simplicity. AA: where is the equation of motion?

Trajectories of the charged particle are plotted in Fig.
1. One can see from the trajectories that bigger charge
parameter increases the average trajectory radius. AA:

we need more description of the trajectory.

Now we consider the equatorial plane (✓ = ⇡/2) as the
plane of motion of charged particle where the e↵ective
potential can be defined as

Veff = E � ṙ
2 (10)

AA: hereafter it is not clear for me: 1. why do

we need ṙ = 0? 2. I think square root is extra..

please check it... which reads for the case ṙ = 0
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The radial dependence of such e↵ective potential (11) is
presented in Fig. 2. We see from the left panel that de-
pending on the value and sign of the charge parameter
the value of e↵ective potential can be greater or smaller
than the uncharged (Schwarzschild) case. AA: The sen-

tence is not clear for me: Since the stress-energy
tensor of an electric field reduces the gravitational at-
traction of the mass e↵ect the increase of the former one
makes e↵ective potential weaker. However, for the nega-
tive value of the charge of black hole we can see that the
e↵ective potential becomes greater with compare to the
Schwarzschild case. This can be explained as for the neg-
ative charged black hole the electrostatic interaction be-
tween two charges comes into the game and increases the
attractive force. From the right panel of Fig. 2 one can
see the same scenario for the di↵erent values of charge of
a test particle. It is apparent that for negatively charged
particles the e↵ective potential becomes stronger consis-
tent with the idea discussed earlier that an additional
force due to the electrostatic interaction makes the e↵ec-
tive potential stronger if the charge of black hole and the
charge of a particle are opposite.
One of the most interesting part of study the particle

motion is to consider the circular obits and find so called
innermost stable circular orbits (ISCO) around a black
hole. In order to find ISCO one may use the standard
procedure and solve the following set of equations

Veff (r) = E , V
0
eff (r) = 0 , V

00
eff (r) = 0 . (12)

2

II. CHARGED PARTICLE MOTION AROUND
ELECTRICALLY CHARGED BLACK HOLE

In this section we study particle motion around electri-
cally charged static black hole described by the spacetime
metric given by [5]

ds
2 = �N(r)dt2 +

1

N(r)
dr

2 + r
2

✓
1 +

2b

r

◆
d✓

2

+r
2

✓
1 +

2b

r

◆
sin ✓d�2

, (1)

N(r) =


1� 2(M � b)

r

�✓
1 +

2b

r

◆�1

,

where b = Q
2
/2M with Q being electric charge and M

is the total mass of a black hole. One can easily find the
event horizon radius from the relation N(r) = 0 which
gives us

rh = 2(M � b) . (2)

It is clearly seen that the horizon vanishes for extreme
cas when bext = M or Qext =

p
2M . Four potential of

an electric field around a black hole takes a form

Aµ =

(
�Q

r

✓
1 +

2b

r

◆�1

, 0, 0, 0

)
. (3)

The components of an electric field observed by ob-
server with four velocity u

↵ is defined as

E↵ = F↵�u
� (4)

where F↵� = A�;↵ � A↵;� is a tensor of electromagnetic
field. In static observer frame with the four velocity de-
fined as

u
↵ =

 s

1 +
2M2

M(r � 2M) +Q2
, 0, 0, 0

!
, (5)

the orthonormal components of an electric field takes the
following form

E
r̂ =

M
2
Q

(Mr +Q2)2
, E

✓̂ = E
�̂ = 0 , (6)

which shows that the electric field is indeed radially di-
rected as it should be. One can easily check that in the
Newtonian limit (M/r ! 0) the expression above reduces
to

E
r̂ =

Q

r2
, (7)

being consistent with the Reissner-Nordström case in the
weak field regime.

We use Hamilton-Jacobi equation of motion to derive
charged particle trajectories which reads as

g
↵�

✓
@S

dx↵
+ qA↵

◆✓
@S

dx�
+ qA�

◆
= �m

2
, (8)

where q andm are the electric charge and mass of the test
particle, respectively. Taking into account symmetrical
properties of the space-time the action of test particle S

in (8) reads

S = �Et+ L�+ S✓ + Sr , (9)

where E and L are the energy and angular momentum
of the charged particle. We will use the specific energy
E = E/m and specific angular momentum L = L/m for
simplicity. AA: where is the equation of motion?

Trajectories of the charged particle are plotted in Fig.
1. One can see from the trajectories that bigger charge
parameter increases the average trajectory radius. AA:

we need more description of the trajectory.

Now we consider the equatorial plane (✓ = ⇡/2) as the
plane of motion of charged particle where the e↵ective
potential can be defined as

Veff = E � ṙ
2 (10)

AA: hereafter it is not clear for me: 1. why do
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ered as embedded into an external, asymptotically uni-
form magnetic field [25]. The rotating Kerr black hole
can change the structure of the asymptotically uniform
magnetic field and an additional electric field will appear
due to the e↵ect of dragging of inertial frames. In the
presence of an external magnetic field, the trajectories of
charged particles may have a chaotic behavior [26–31].
In Refs. [32–41], authors have made e↵orts to determine
and analyze the structure of the spacetime by studying
the motion of test particles and following their orbits near
black holes.

The study of magnetic dipoles around black holes in
the presence of a magnetic field may be also consid-
ered as a tool of testing the spacetime structure around
gravitational compact objects. The first pioneering at-
tempts to analyze the magnetic dipoles motion around
Schwarzschild and Kerr black holes immersed in exter-
nal magnetic fields have been made in Refs. [42, 43].
Particularly, the magnetic dipole motion around non-
Schwarzschild black holes with nonvanishing deformation
parameter in the presence of a magnetic field has been
studied in [44]. Magnetic dipole collisions near rotating
black holes in quintessence have been considered in [45].
Acceleration of magnetic dipoles near gravitational com-
pact objects in the presence of an external magnetic field
have been explored, e.g. in Refs. [46–49] for the di↵erent
modified gravity models. In our recent works, we have
studied the magnetic dipole motion in conformal gravity
and modified gravity models [50, 51]. For the review of
studies of the electromagnetic field around black holes in
the presence of an external, asymptotically uniform, and
dipolar magnetic field we refer the readers to Refs. [52–
79].

In this paper, we plan to study the charged and mag-
netic dipoles dynamics near an electrically and magnet-
ically charged Kerr-Sen black hole. The paper is orga-
nized as follows: in Section II, we have studied charged
particle motion around electrically charged stringy black
holes. Section III is devoted to the dynamics of the
magnetic monopole around magnetically charged stringy
black holes. We explore the magnetic dipole motion
around magnetically charged stringy black holes in Sec-
tion IV. Sections V and VI are devoted to the main re-
sults on possible astrophysical applications and the sum-
mary of the obtained results, respectively.
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server with four velocity u

↵ are defined as
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where q andm are the electric charge and mass of the test
particle, respectively. Taking into account symmetrical
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properties of the space-time the action of test particle S
in (8) reads

S = �Et+ L�+ S✓ + Sr , (9)

where E and L are the energy and angular momentum
of the charged particle. We will use the specific energy
E = E/m and specific angular momentum L = L/m for
simplicity. Then the equation of motion (8) takes the
form
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Trajectories of the charged particle are plotted in Fig.
1. One can see from the trajectories that the bigger value
of charge parameter increases the average trajectory ra-
dius. Even without having investigated the properties
of e↵ective potential for charged particles one can state
from the trajectories behavior that higher electric charge
parameter Q of a black hole makes the average radius
of trajectories bigger due to the electrostatic interaction
between electric charge of a test particle and the charge
of a black hole i.e. for positively charged test particle the
average radius of a trajectory is growing with the increase
of charges of a central gravitating object.

Now we consider the equatorial plane (✓ = ⇡/2) as the
plane of motion of charged particle where the e↵ective
potential can be defined from the relation
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Positive energy requires the positive sign which we call as
e↵ective potential from now on. The radial dependence
of e↵ective potential (12) is presented in Fig. 2. We see
from the left panel that depending on the value and sign
of the charge parameter the value of e↵ective potential
can be greater or smaller than that for the Schwarzschild
case. Since the electric charge parameter reduces the
gravitational potential of a black hole the increase of the
value of electric charge makes e↵ective potential weaker.
However, for the negative value of the charge of black hole
one can see that the e↵ective potential becomes greater
with compare to that in the Schwarzschild case. This can
be explained as for the negatively charged black hole the
electrostatic interaction between two charges comes to-
gether and increases the attractive force. From the right

panel of Fig. 2 one can see the same scenario for the di↵er-
ent values of charge of a test particle. It is apparent that
for negatively charged particles the e↵ective potential be-
comes stronger in consistent with the idea discussed ear-
lier that an additional force due to the electrostatic inter-
action makes the e↵ective potential stronger if the charge
of black hole and the charge of a particle are opposite.
One of the most interesting parts of study of the par-

ticle motion is to consider the circular obits and find so
called innermost stable circular orbits (ISCO) around a
black hole. In order to find ISCO one may use the stan-
dard procedure and solve the following set of equations

Ve↵(r) = E , V
0
e↵
(r) = 0 , V

00
e↵
(r) = 0 . (13)

In Fig. 3 we have shown the relation between ISCO ra-
dius and parameter Q. From the left panel of Fig. 3 one
can see the interesting phenomena that if the charge of
a particle with unit mass is q = �Qext/2 then for ex-
tremely charged black hole (Q =

p
2M) ISCO tends to

infinity arguing that no stable circular orbits can exist no
matter how far the charged particle is orbiting. From the
right panel of Fig. 3 we can ensure one more time that
when we deal with opposite electric charges the electro-
static interaction makes the attractive force greater and
therefore we observe larger ISCO orbits.
One can find the dependence of the energy of a charged

particle in the corresponding circular radius which comes
from the relations in Eq.(13). The plots are shown in
Fig. 4. It is known that for higher attractive force the
energy of a particle becomes smaller. Here one can see
that the energy of a test particle for opposite charges
is less than that for the case of having the same electric
charge sign. The same graphs for the angular momentum
of the charged particle are plotted in Fig. 5. From the
graphs it is obvious that the minimum points correspond
to the ISCO radii for the given values of parameters.
Other interesting task is to analyze whether the elec-

tric charge of a static black hole may mimic the rotation
parameter of the Kerr black hole which has been shown
in Fig. 6. The plot has been obtained based on the as-
sumption that if the charge parameter of a static black
hole can mimic the rotation parameter of Kerr black hole
then the same ISCO radius can be observed for selected
relation range between these two parameters and one can
see that the extreme rotation of a Kerr solution matches
with the extreme electric charge of a static charged black
hole. One could argue that due to obtained degeneracy
between spin and electric charge of black hole the ob-
served black holes in the universe can not to be exactly
Kerr ones but they also can be electrically charged static
black holes.
Other phenomena opposing this degeneracy is that

from astrophysical point of view all the charged objects
try to minimize their electric charge due to the electro-
static attraction of opposite charges which leads to the
result that these kind of objects should not have such big
electric charges that could compete with rotation param-
eter.

3

properties of the space-time the action of test particle S
in (8) reads

S = �Et+ L�+ S✓ + Sr , (9)

where E and L are the energy and angular momentum
of the charged particle. We will use the specific energy
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Trajectories of the charged particle are plotted in Fig.
1. One can see from the trajectories that the bigger value
of charge parameter increases the average trajectory ra-
dius. Even without having investigated the properties
of e↵ective potential for charged particles one can state
from the trajectories behavior that higher electric charge
parameter Q of a black hole makes the average radius
of trajectories bigger due to the electrostatic interaction
between electric charge of a test particle and the charge
of a black hole i.e. for positively charged test particle the
average radius of a trajectory is growing with the increase
of charges of a central gravitating object.
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Positive energy requires the positive sign which we call as
e↵ective potential from now on. The radial dependence
of e↵ective potential (12) is presented in Fig. 2. We see
from the left panel that depending on the value and sign
of the charge parameter the value of e↵ective potential
can be greater or smaller than that for the Schwarzschild
case. Since the electric charge parameter reduces the
gravitational potential of a black hole the increase of the
value of electric charge makes e↵ective potential weaker.
However, for the negative value of the charge of black hole
one can see that the e↵ective potential becomes greater
with compare to that in the Schwarzschild case. This can
be explained as for the negatively charged black hole the
electrostatic interaction between two charges comes to-
gether and increases the attractive force. From the right

panel of Fig. 2 one can see the same scenario for the di↵er-
ent values of charge of a test particle. It is apparent that
for negatively charged particles the e↵ective potential be-
comes stronger in consistent with the idea discussed ear-
lier that an additional force due to the electrostatic inter-
action makes the e↵ective potential stronger if the charge
of black hole and the charge of a particle are opposite.
One of the most interesting parts of study of the par-

ticle motion is to consider the circular obits and find so
called innermost stable circular orbits (ISCO) around a
black hole. In order to find ISCO one may use the stan-
dard procedure and solve the following set of equations
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0
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(r) = 0 , V
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In Fig. 3 we have shown the relation between ISCO ra-
dius and parameter Q. From the left panel of Fig. 3 one
can see the interesting phenomena that if the charge of
a particle with unit mass is q = �Qext/2 then for ex-
tremely charged black hole (Q =

p
2M) ISCO tends to

infinity arguing that no stable circular orbits can exist no
matter how far the charged particle is orbiting. From the
right panel of Fig. 3 we can ensure one more time that
when we deal with opposite electric charges the electro-
static interaction makes the attractive force greater and
therefore we observe larger ISCO orbits.
One can find the dependence of the energy of a charged

particle in the corresponding circular radius which comes
from the relations in Eq.(13). The plots are shown in
Fig. 4. It is known that for higher attractive force the
energy of a particle becomes smaller. Here one can see
that the energy of a test particle for opposite charges
is less than that for the case of having the same electric
charge sign. The same graphs for the angular momentum
of the charged particle are plotted in Fig. 5. From the
graphs it is obvious that the minimum points correspond
to the ISCO radii for the given values of parameters.
Other interesting task is to analyze whether the elec-

tric charge of a static black hole may mimic the rotation
parameter of the Kerr black hole which has been shown
in Fig. 6. The plot has been obtained based on the as-
sumption that if the charge parameter of a static black
hole can mimic the rotation parameter of Kerr black hole
then the same ISCO radius can be observed for selected
relation range between these two parameters and one can
see that the extreme rotation of a Kerr solution matches
with the extreme electric charge of a static charged black
hole. One could argue that due to obtained degeneracy
between spin and electric charge of black hole the ob-
served black holes in the universe can not to be exactly
Kerr ones but they also can be electrically charged static
black holes.
Other phenomena opposing this degeneracy is that

from astrophysical point of view all the charged objects
try to minimize their electric charge due to the electro-
static attraction of opposite charges which leads to the
result that these kind of objects should not have such big
electric charges that could compete with rotation param-
eter.
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FIG. 2: The radial dependence of the e↵ective potential of charged particle around static electrically charged stringy black hole
at equatorial plane ✓ = ⇡/2. The left panel is for the di↵erent values of black hole charge, the right one is for the di↵erent
values of particle charge.

FIG. 3: The dependence of ISCO radius from the electric charge of stringy black hole for the di↵erent values of particle’s charge
(left panel) and from the charge of particle for the negative and positive values of black hole charge (right panel).

3-form H↵�� consists of potential B↵� and the Maxwell
gauge field A↵ and is related by the following expression

H↵�� = @↵B�� + @�B↵� + @�B�↵
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A↵F�� +A�F↵� +A�F�↵

⌘
. (15)

From the action (14) there exists a way to come to
the standard Einstein action by setting H↵�� = 0. In
fact, by rescaling the metric tensor through the coupling
constant g↵� ! e

�2'
g↵� one can then rewrite the action

in the following form

S =

Z
d
4
x
p
�g

⇣
R� 2(r')2 � e

�2'
F

2

⌘
. (16)

The above action satisfies to the following equation of
motion for Maxwell field

r↵

⇣
e
�2'

F
↵�

⌘
= 0 . (17)

Note that this equation is invariant under the trans-
formation F ! F

?, ' ! �'. For Eq. (17), F
?
↵� =

e
�2' 1

2
✏↵�

�⇢
F�⇢ is satisfied as a curl-free [19, 82]. Fol-
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FIG. 1: Positively charged test particle trajectories for di↵erent values of electric charge Q of stringy black hole. The top row
is for black black hole with electric charge Q/M = �0.5, the middle one is for the Schwarzschild black hole and the bottom
one is for the black hole with thc charge Q/M = 0.5.

III. MAGNETIC MONOPOLE MOTION
AROUND MAGNETICALLY CHARGED

STRINGY BLACK HOLES

In the previous section we have reviewed the electri-
cally charged string black hole solution (also known as
Sen black hole solution) being a solution for the heterotic
string theory in the four dimensional low-energy field the-
ory. However, if the black hole metric is magnetically
charged the specetime metric is then completely di↵er-

ent [80]. One can write the action for the heterotic string
theory in the four dimensional low-energy field regime as
[19, 81]
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with ' being the dilaton field and e
' is regarded as a

coupling constant reinforcing the stringy e↵ects. Here
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FIG. 2: The radial dependence of the e↵ective potential of charged particle around static electrically charged stringy black hole
at equatorial plane ✓ = ⇡/2. The left panel is for the di↵erent values of black hole charge, the right one is for the di↵erent
values of particle charge.
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FIG. 3: The dependence of ISCO radius from the electric charge of stringy black hole for the di↵erent values of particle’s charge
(left panel) and from the charge of particle for the negative and positive values of black hole charge (right panel).
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FIG. 6: The dependence of the Kerr black hole’s rotation
parameter a from electric charge of stringy black hole Q which
corresponds to the matching values of parameters for the same
values of ISCO. The graph has been plotted for neutral test
particles and shows that the black hole charge can mimic black
hole spin.

charged black hole as

H ⌘ 1

2
g
↵�

✓
@S
@x↵

� qA↵ + iqmA
?
↵

◆

⇥
✓

@S
@x�

� qA� + iqmA
?
�

◆
, (21)

with the action S, the four-vector coordinate x↵, the elec-
tric and magnetic charges q and qm of test particle and
the non-vanishing components of the vector potential A↵

and the dual vector potential A?
↵ of the electromagnetic

field which has the following nonvanishing components:

A
?
t = � iQm

r
and A� = �Qm cos ✓ . (22)

Here we shall focus on the magnetic monopole motion,
and thus more specifically we consider the non-vanishing
A

?
t component of the electromagnetic field as it inter-

acts with the test particle having only magnetic charge
qm [19]. However, we will return to the study of electri-
cally charged particle motion in the next section.

Since the Hamiltonian is regarded as a constant one has
to set H = k/2, where k and m are related by k = �m

2

(with m representing the mass of magnetic monopole).
For the above Hamilton-Jacobi equation the action S for
the motion of the magnetic monopoles in the gravita-
tional field of magnetically charged black hole will read
as follows

S = �1

2
k�� Et+ L'+ Sr(r) + S✓(✓) , (23)

where S(r, ✓) is related to the functions of r and ✓. One
can then rewrite the Hamilton-Jacobi equation in the fol-
lowing expanded form:

� h(r)

f(r)


�E +

qm Qm

r

�2
+ f(r) h(r)

✓
@Sr

@r

◆2

+
1

r2

✓
@S✓

@✓

◆2

+
L
2

r2 sin2 ✓
� k = 0 . (24)

There exist four independent constants of motion in the
above equation, i.e. E, L, k and the fourth one is re-
lated to the latitudinal motion, which comes from the
separability of the action. However, we omit the fourth
constant of motion since will further focus on motion
of magnetic monopole at the the equatorial plane where
✓ = ⇡/2 , i.e. ✓ = ⇡/2 [24]. From Eq. (24) it is then

TABLE I: The value of the ISCO radius of the magnetic
monopoles moving around the magnetically charged black
hole for the di↵erent values of magnetic charge parameter g
for the fixed values of Qm. Note that the ISCO radius is the
same with compare to the Schwarzschild case, i.e. risco = 6
always as seen in Eq. (31), in the case of g = 0 for any value
of Qm.

g
Qm 0.01 0.05 0.10 0.50

�0.01 �0.05 �0.1 �0.50

0.1 6.00001 6.00006 6.00015 6.00181
5.99999 5.99997 5.99996 -

0.2 6.00008 6.00044 6.00099 6.00979
5.99992 5.99967 5.99944 -

0.5 6.00136 6.00719 6.01545 6.13338
5.99868 5.99379 5.98850 5.97221

0.8 6.00708 6.03764 6.08148 6.90408
5.99313 5.96765 5.93985 5.82584

1.0 6.01869 6.10156 6.22713 7.82272
5.98203 5.91674 5.84776 5.57606

straightforward to obtain the radial equation of motion
for magnetic monopoles in the following form

ṙ
2 =

h
E � E�(r)

ih
E � E+(r)

i
, (25)

where the radial function E±(r,L, Qm, g) related to the
radial motion is given by

E±(r,L, Qm, g) =
gQm

r
±

s
f(r)

h(r)

✓
1 +

L2

r2

◆
, (26)

and we have defined g = qm/m and k/m
2 = �1. As can

be seen from Eq. (25), ṙ2 � 0 must always be satisfied,
i.e. either E > E+(r,L, Qm, g) or E < E�(r,L, Qm, g).
However, we shall restrict ourselves to the positive energy
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FIG. 4: The dependence of the energy of a electrically charged particle from circular orbit radius for the di↵erent values of
stringy black hole charge (left panel) and particle charge (right panel) .

FIG. 5: The dependence of the angular momentum of a charged particle from circular orbit radius for the di↵erent values of
stringy black hole charge (left panel) and particle charge (right panel)

lowing the above procedure it is assumed that the elec-
tromagnetic duality transformation, i.e. ' ! �', can
transform electrically charged black hole solution into a
magnetically charged one. Consequently, the spacetime
metric describing a magnetically charged black hole in
Schwarzschild coordinates (t, r, ✓,') is written as

ds
2 = �f(r)

h(r)
dt

2 +
dr

2

f(r)h(r)
+ r

2
d✓

2 + r
2 sin2 ✓ d�2

,(18)

where

f(r) = 1� 2M

r
, h(r) = 1� Q

2

m

M r
, (19)

with M being black hole mass and Qm is related to the
black hole magnetic charge. It is worth noting that the
event horizon of the above black hole spacetime is given

by

✓
1� 2M

r

◆ 
1� Q

2

m

M r

!
= 0 . (20)

From the above equation it is immediately clear that the
event horizon is located at rh = 2M being similar to what
is obtained in the Schwarzschild case as well as from the
property of the above metric the black hole magnetic
charge is limited by the upper value Qm =

p
2M .

Further we consider the motion of magnetic monopoles
and electrically charged particles in the above magneti-
cally charged string black hole spacetime (18).
Here we consider magnetic monopole motion in the

background geometry of magnetically charged stringy
black hole, i.e, study the motion of test particle with
the rest mass m and magnetic charge qm. We define
the Hamiltonian of the system [24] for a motion of mag-
netic monopole with electric charge around magnetically
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lowing the above procedure it is assumed that the elec-
tromagnetic duality transformation, i.e. ' ! �', can
transform electrically charged black hole solution into a
magnetically charged one. Consequently, the spacetime
metric describing a magnetically charged black hole in
Schwarzschild coordinates (t, r, ✓,') is written as
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with M being black hole mass and Qm is related to the
black hole magnetic charge. It is worth noting that the
event horizon of the above black hole spacetime is given

by
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From the above equation it is immediately clear that the
event horizon is located at rh = 2M being similar to what
is obtained in the Schwarzschild case as well as from the
property of the above metric the black hole magnetic
charge is limited by the upper value Qm =

p
2M .

Further we consider the motion of magnetic monopoles
and electrically charged particles in the above magneti-
cally charged string black hole spacetime (18).
Here we consider magnetic monopole motion in the

background geometry of magnetically charged stringy
black hole, i.e, study the motion of test particle with
the rest mass m and magnetic charge qm. We define
the Hamiltonian of the system [24] for a motion of mag-
netic monopole with electric charge around magnetically
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FIG. 6: The dependence of the Kerr black hole’s rotation
parameter a from electric charge of stringy black hole Q which
corresponds to the matching values of parameters for the same
values of ISCO. The graph has been plotted for neutral test
particles and shows that the black hole charge can mimic black
hole spin.
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with the action S, the four-vector coordinate x↵, the elec-
tric and magnetic charges q and qm of test particle and
the non-vanishing components of the vector potential A↵

and the dual vector potential A?
↵ of the electromagnetic

field which has the following nonvanishing components:

A
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t = � iQm
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and A� = �Qm cos ✓ . (22)

Here we shall focus on the magnetic monopole motion,
and thus more specifically we consider the non-vanishing
A

?
t component of the electromagnetic field as it inter-

acts with the test particle having only magnetic charge
qm [19]. However, we will return to the study of electri-
cally charged particle motion in the next section.

Since the Hamiltonian is regarded as a constant one has
to set H = k/2, where k and m are related by k = �m

2

(with m representing the mass of magnetic monopole).
For the above Hamilton-Jacobi equation the action S for
the motion of the magnetic monopoles in the gravita-
tional field of magnetically charged black hole will read
as follows
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where S(r, ✓) is related to the functions of r and ✓. One
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There exist four independent constants of motion in the
above equation, i.e. E, L, k and the fourth one is re-
lated to the latitudinal motion, which comes from the
separability of the action. However, we omit the fourth
constant of motion since will further focus on motion
of magnetic monopole at the the equatorial plane where
✓ = ⇡/2 , i.e. ✓ = ⇡/2 [24]. From Eq. (24) it is then
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straightforward to obtain the radial equation of motion
for magnetic monopoles in the following form
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where the radial function E±(r,L, Qm, g) related to the
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and we have defined g = qm/m and k/m
2 = �1. As can

be seen from Eq. (25), ṙ2 � 0 must always be satisfied,
i.e. either E > E+(r,L, Qm, g) or E < E�(r,L, Qm, g).
However, we shall restrict ourselves to the positive energy
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FIG. 6: The dependence of the Kerr black hole’s rotation
parameter a from electric charge of stringy black hole Q which
corresponds to the matching values of parameters for the same
values of ISCO. The graph has been plotted for neutral test
particles and shows that the black hole charge can mimic black
hole spin.
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Here we shall focus on the magnetic monopole motion,
and thus more specifically we consider the non-vanishing
A
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t component of the electromagnetic field as it inter-

acts with the test particle having only magnetic charge
qm [19]. However, we will return to the study of electri-
cally charged particle motion in the next section.

Since the Hamiltonian is regarded as a constant one has
to set H = k/2, where k and m are related by k = �m
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(with m representing the mass of magnetic monopole).
For the above Hamilton-Jacobi equation the action S for
the motion of the magnetic monopoles in the gravita-
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There exist four independent constants of motion in the
above equation, i.e. E, L, k and the fourth one is re-
lated to the latitudinal motion, which comes from the
separability of the action. However, we omit the fourth
constant of motion since will further focus on motion
of magnetic monopole at the the equatorial plane where
✓ = ⇡/2 , i.e. ✓ = ⇡/2 [24]. From Eq. (24) it is then
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with the action S, the four-vector coordinate x↵, the elec-
tric and magnetic charges q and qm of test particle and
the non-vanishing components of the vector potential A↵

and the dual vector potential A?
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Here we shall focus on the magnetic monopole motion,
and thus more specifically we consider the non-vanishing
A
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t component of the electromagnetic field as it inter-

acts with the test particle having only magnetic charge
qm [19]. However, we will return to the study of electri-
cally charged particle motion in the next section.

Since the Hamiltonian is regarded as a constant one has
to set H = k/2, where k and m are related by k = �m
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(with m representing the mass of magnetic monopole).
For the above Hamilton-Jacobi equation the action S for
the motion of the magnetic monopoles in the gravita-
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There exist four independent constants of motion in the
above equation, i.e. E, L, k and the fourth one is re-
lated to the latitudinal motion, which comes from the
separability of the action. However, we omit the fourth
constant of motion since will further focus on motion
of magnetic monopole at the the equatorial plane where
✓ = ⇡/2 , i.e. ✓ = ⇡/2 [24]. From Eq. (24) it is then
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with the action S, the four-vector coordinate x↵, the elec-
tric and magnetic charges q and qm of test particle and
the non-vanishing components of the vector potential A↵
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Here we shall focus on the magnetic monopole motion,
and thus more specifically we consider the non-vanishing
A
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t component of the electromagnetic field as it inter-

acts with the test particle having only magnetic charge
qm [19]. However, we will return to the study of electri-
cally charged particle motion in the next section.

Since the Hamiltonian is regarded as a constant one has
to set H = k/2, where k and m are related by k = �m
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(with m representing the mass of magnetic monopole).
For the above Hamilton-Jacobi equation the action S for
the motion of the magnetic monopoles in the gravita-
tional field of magnetically charged black hole will read
as follows
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There exist four independent constants of motion in the
above equation, i.e. E, L, k and the fourth one is re-
lated to the latitudinal motion, which comes from the
separability of the action. However, we omit the fourth
constant of motion since will further focus on motion
of magnetic monopole at the the equatorial plane where
✓ = ⇡/2 , i.e. ✓ = ⇡/2 [24]. From Eq. (24) it is then
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and we have defined g = qm/m and k/m
2 = �1. As can

be seen from Eq. (25), ṙ2 � 0 must always be satisfied,
i.e. either E > E+(r,L, Qm, g) or E < E�(r,L, Qm, g).
However, we shall restrict ourselves to the positive energy
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properties of the space-time the action of test particle S
in (8) reads

S = �Et+ L�+ S✓ + Sr , (9)

where E and L are the energy and angular momentum
of the charged particle. We will use the specific energy
E = E/m and specific angular momentum L = L/m for
simplicity. Then the equation of motion (8) takes the
form

� (2bE + Er + qQ)2

N(r)(2b+ r)2
+N(r)

✓
@Sr

@r

◆2

(10)

+
L2

(2br + r2) sin2 ✓
+

1

2br + r2

✓
@S✓

@✓

◆2

= �1 .

Trajectories of the charged particle are plotted in Fig.
1. One can see from the trajectories that the bigger value
of charge parameter increases the average trajectory ra-
dius. Even without having investigated the properties
of e↵ective potential for charged particles one can state
from the trajectories behavior that higher electric charge
parameter Q of a black hole makes the average radius
of trajectories bigger due to the electrostatic interaction
between electric charge of a test particle and the charge
of a black hole i.e. for positively charged test particle the
average radius of a trajectory is growing with the increase
of charges of a central gravitating object.

Now we consider the equatorial plane (✓ = ⇡/2) as the
plane of motion of charged particle where the e↵ective
potential can be defined from the relation

ṙ
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E � V

�
e↵
(r)
ih
E � V

+

e↵
(r)
i
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that reads
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Positive energy requires the positive sign which we call as
e↵ective potential from now on. The radial dependence
of e↵ective potential (12) is presented in Fig. 2. We see
from the left panel that depending on the value and sign
of the charge parameter the value of e↵ective potential
can be greater or smaller than that for the Schwarzschild
case. Since the electric charge parameter reduces the
gravitational potential of a black hole the increase of the
value of electric charge makes e↵ective potential weaker.
However, for the negative value of the charge of black hole
one can see that the e↵ective potential becomes greater
with compare to that in the Schwarzschild case. This can
be explained as for the negatively charged black hole the
electrostatic interaction between two charges comes to-
gether and increases the attractive force. From the right

panel of Fig. 2 one can see the same scenario for the di↵er-
ent values of charge of a test particle. It is apparent that
for negatively charged particles the e↵ective potential be-
comes stronger in consistent with the idea discussed ear-
lier that an additional force due to the electrostatic inter-
action makes the e↵ective potential stronger if the charge
of black hole and the charge of a particle are opposite.
One of the most interesting parts of study of the par-

ticle motion is to consider the circular obits and find so
called innermost stable circular orbits (ISCO) around a
black hole. In order to find ISCO one may use the stan-
dard procedure and solve the following set of equations

Ve↵(r) = E , V
0
e↵
(r) = 0 , V

00
e↵
(r) = 0 . (13)

In Fig. 3 we have shown the relation between ISCO ra-
dius and parameter Q. From the left panel of Fig. 3 one
can see the interesting phenomena that if the charge of
a particle with unit mass is q = �Qext/2 then for ex-
tremely charged black hole (Q =

p
2M) ISCO tends to

infinity arguing that no stable circular orbits can exist no
matter how far the charged particle is orbiting. From the
right panel of Fig. 3 we can ensure one more time that
when we deal with opposite electric charges the electro-
static interaction makes the attractive force greater and
therefore we observe larger ISCO orbits.
One can find the dependence of the energy of a charged

particle in the corresponding circular radius which comes
from the relations in Eq.(13). The plots are shown in
Fig. 4. It is known that for higher attractive force the
energy of a particle becomes smaller. Here one can see
that the energy of a test particle for opposite charges
is less than that for the case of having the same electric
charge sign. The same graphs for the angular momentum
of the charged particle are plotted in Fig. 5. From the
graphs it is obvious that the minimum points correspond
to the ISCO radii for the given values of parameters.
Other interesting task is to analyze whether the elec-

tric charge of a static black hole may mimic the rotation
parameter of the Kerr black hole which has been shown
in Fig. 6. The plot has been obtained based on the as-
sumption that if the charge parameter of a static black
hole can mimic the rotation parameter of Kerr black hole
then the same ISCO radius can be observed for selected
relation range between these two parameters and one can
see that the extreme rotation of a Kerr solution matches
with the extreme electric charge of a static charged black
hole. One could argue that due to obtained degeneracy
between spin and electric charge of black hole the ob-
served black holes in the universe can not to be exactly
Kerr ones but they also can be electrically charged static
black holes.
Other phenomena opposing this degeneracy is that

from astrophysical point of view all the charged objects
try to minimize their electric charge due to the electro-
static attraction of opposite charges which leads to the
result that these kind of objects should not have such big
electric charges that could compete with rotation param-
eter.



ISCO of the magnetically charged particle
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FIG. 6: The dependence of the Kerr black hole’s rotation
parameter a from electric charge of stringy black hole Q which
corresponds to the matching values of parameters for the same
values of ISCO. The graph has been plotted for neutral test
particles and shows that the black hole charge can mimic black
hole spin.
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with the action S, the four-vector coordinate x↵, the elec-
tric and magnetic charges q and qm of test particle and
the non-vanishing components of the vector potential A↵

and the dual vector potential A?
↵ of the electromagnetic

field which has the following nonvanishing components:
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Here we shall focus on the magnetic monopole motion,
and thus more specifically we consider the non-vanishing
A

?
t component of the electromagnetic field as it inter-

acts with the test particle having only magnetic charge
qm [19]. However, we will return to the study of electri-
cally charged particle motion in the next section.

Since the Hamiltonian is regarded as a constant one has
to set H = k/2, where k and m are related by k = �m

2

(with m representing the mass of magnetic monopole).
For the above Hamilton-Jacobi equation the action S for
the motion of the magnetic monopoles in the gravita-
tional field of magnetically charged black hole will read
as follows
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where S(r, ✓) is related to the functions of r and ✓. One
can then rewrite the Hamilton-Jacobi equation in the fol-
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There exist four independent constants of motion in the
above equation, i.e. E, L, k and the fourth one is re-
lated to the latitudinal motion, which comes from the
separability of the action. However, we omit the fourth
constant of motion since will further focus on motion
of magnetic monopole at the the equatorial plane where
✓ = ⇡/2 , i.e. ✓ = ⇡/2 [24]. From Eq. (24) it is then
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and we have defined g = qm/m and k/m
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be seen from Eq. (25), ṙ2 � 0 must always be satisfied,
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determining the ISCO radius for vanishing g = 0. Thus,
we obtain the minimum value of the angular momentum
from V

0
e↵
(r,L, Qm, g) = 0

L2 =

�
Q

2

m � 2M2
�
r
3

6M2r � 2M (2Q2
m + r2) +Q2

mr
, (30)

for which particles are allowed to be at circular orbits.
By substituting Eq. (30) into V

00
e↵
(r,L, Qm, g) = 0 we

give the following condition for the ISCO radius

⇣
Q

2

m � 2M2

⌘
(r � 6M) r3

⇣
Q

2

m �Mr

⌘2

= 0 . (31)

From this equation it is immediately clear that, in the
case of g = 0, it implicitly gives risco = 6M similarly
to what was obtained for the Schwarzschild spacetime.
It would lead to serious implications from observational
point of view, i.e. it would not be possible for outside
observers to distinguish between a static and spherically
symmetric black hole and a magnetically charged black
hole. In Table I, we try to explore the ISCO radius nu-
merically for the di↵erent values of the magnetic charge
parameter g in the case of fixed Qm. We show that the
radius of the ISCO radius increases as the positive val-
ues of g grow while the opposite result is for its negative
values. Note that there occur small changes in the ISCO
radius, risco = 6 ± �risco, for small values of magnetic
charge parameter, i.e. g ⌧ 1.

Since the black hole parameters except the total mass
M are still not measured/detected precisely we are able
to make predictions for black hole parameters. We now
devote our attention to the matching values of magnetic
charge and rotation parameters for which the ISCO ra-
dius can have the same values. As can be seen from
Fig. 9 the e↵ect induced by magnetic charge parame-
ter may allow test particles moving around magnetically
charged black hole to have orbits which are completely
the same as in Kerr spacetime, and hence its e↵ect for
various values of Qm may also provide the same ISCO
radius as compared to the one around Kerr black hole.
However, we consider a idealized model in our calcula-
tions as done in Fig. 9 yet it helps to understand the be-
haviour of the ISCO radius around magnetically charged
black hole, thus resulting in mimicking the rotation pa-
rameter up to a ⇡ 0.8 as a consequence of nonvanishing
magnetic charge parameter g.

IV. MAGNETIC DIPOLES AROUND
MAGNETICALLY CHARGED STRINGY BLACK

HOLES

Now we consider the dynamics of magnetic dipoles
around magnetically charged stringy black holes with
metric tensor of spacetime (18) and the electromagnetic
potential (22), which can be used to obtain the nonzero
component of the electromagnetic field tensor Fµ⌫ in the

Qm = 1
Qm = 1.2
Qm = 1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

g
a/
M

FIG. 9: The rotation parameter a of the Kerr black hole
against the magnetic charge parameter for di↵erent values
of stringy black hole magnetic charge Qm. It is easy to see
that the ISCO radius is the same for corresponding values
of rotation and magnetic charge parameters. Note that the
magnetic charge parameter can mimic the black hole spin
parameter up to 0.8.

following form

F✓� = �Qm sin ✓ . (32)

The magnetic field of magnetically charged stringy
black hole can be found using the relation

B
↵ =

1

2
⌘
↵��µ

F��wµ , (33)

where wµ is the four velocity of observer, ⌘↵��� is the
pseudo-tensorial form of the Levi-Civita symbol ✏↵���

defined as

⌘↵��� =
p
�g✏↵��� , ⌘

↵��� = � 1p
�g

✏
↵���

, (34)

with g = det|gµ⌫ | = �r
4 sin2 ✓ for spacetime metric (18)

and

✏↵��� =

8
><

>:

+1 , for even permutations ,

�1 , for odd permutations ,

0 , for the other combinations ,

. (35)

The orthonormal radial component of the magnetic
field of magnetically charged of the stringy black hole
takes the following form

B
r̂ =

Qm

r2
. (36)

Eq. (36) implies that the radial component of the mag-
netic field around magnetically charged black holes does



10

not e↵ected by the spacetime geometry of the stringy
black hole and formally coincides with the standard New-
tonian expression.

Now one may study the dynamics of magnetic dipoles
around magnetically charged black holes using the
Hamilton-Jacobi equation [42]

g
µ⌫ @S

@xµ

@S
@x⌫

= �
 
m� 1

2
Dµ⌫

Fµ⌫

!2

, (37)

with the term Dµ⌫Fµ⌫ being responsible for the inter-
action between the magnetic dipoles and the magnetic
field generated by magnetic charge of the stringy black
hole. Here we assume that the magnetic dipole has the
corresponding polarization tensor D↵� that satisfies the
following condition

D↵� = ⌘
↵��⌫

u�µ⌫ , D↵�
u� = 0 , (38)

where µ
⌫ is dipole moment of the magnetic dipole. Here

we determine the interaction term Dµ⌫Fµ⌫ using the re-
lation between the electromagnetic field tensor F↵� and
components of electric E↵ and magnetic B

↵ fields as

F↵� = w↵E� � w�E↵ � ⌘↵���w
�
B

�
. (39)

Taking into account the condition given in (38) and
non-zero components of the electromagnetic field tensor
we have

D↵�
F↵� = 2µ↵B

↵ = 2µ↵̂
B↵̂ . (40)

Assume the direction of the magnetic dipole moment of
the particle is at the equatorial plane and is aligned along
the direction of magnetic field lines of the stringy black
hole. In this case the components of the dipole magnetic
moment of the particle are given as µi = (µr

, 0, 0). This
configuration allows an equilibrium state for the interac-
tion between the magnetic field and the magnetic dipole,
while other configurations of magnetic dipole moment
components can not provide the stable equilibrium. This
configuration also allows to study the particle motion and
one may avoid the relative motion problem choosing the
appropriate observer’s frame. Due to constant value of
the magnetic moment of the particle the second part of
the condition (38) is satisfied. The interaction part can
be performed using Eqs. (40) and (32) as

D↵�
F↵� =

2µQm

r2
, (41)

where µ =
q

µîµ
î is the norm of the magnetic dipole

moment of the particle.
Due to symmetric properties of the magnetic field and

spacetime one may express the action of the magnetic
dipole in the Hamilton-Jacobi equation (37) in the fol-
lowing form

S = �Et+ L�+ Sr✓(r, ✓) . (42)

Since we consider the motion at equatorial plane (✓ =
⇡/2) the Eqs. (40), (37) and (42) provide the following
equation for radial motion

ṙ
2 = E2 � Ve↵(r;L,B) , (43)

where the e↵ective potential has the form

Ve↵(r;L,B) =
f(r)

h(r)

"✓
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r2

◆2

+
L2

r2

#
(44)

with the relation

B =
µQm

m
,

being a magnetic interaction parameter responsible for
the interaction between magnetic dipoles and the proper
magnetic field of the magnetically charged stringy black
hole. � = µ/(mM) is a dimensionless parameter which is
characterized by the magnetic dipole and the spacetime
parameters. � is always positive and it is for the system
when magnetized neutron star treated as test magnetic
dipole with moment µ = (1/2)BNSR
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The circular stable orbits of the magnetic dipole
around the central object can be defined by the condi-
tions

V
0
e↵

= 0 , V
00
e↵

� 0 , (46)

which can be used to find the specific angular momentum
and energy of the magnetic dipole on the circular orbits:

L2 =

�
r
2 � B

�

r2F(r)

n
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r
3 � 5rB

⌘
+ 4MB

⇣
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2 + 3B
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, (47)

E2 =
2M(r � 2M)2

F(r)

 
1� B2

r4

!
, (48)

where F(r) = 2M(Q2

m + r
2)� r

�
6M2 +Q

2

m

�
.

Figure 10 shows the radial dependence of the specific
angular momentum of a magnetic dipole around the mag-
netically charged stringy black hole. One can see from
the figure that the increase of the magnetic charge of
stringy black hole (the parameter � for magnetic dipole)
causes to decrease of the specific angular momentum of
magnetic dipoles in circular orbits and the inner circular
orbit comes closer to the central object, while the pa-
rameter � does not change the distance of last circular
orbit.

Magnetized particle motion
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not e↵ected by the spacetime geometry of the stringy
black hole and formally coincides with the standard New-
tonian expression.

Now one may study the dynamics of magnetic dipoles
around magnetically charged black holes using the
Hamilton-Jacobi equation [42]
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with the term Dµ⌫Fµ⌫ being responsible for the inter-
action between the magnetic dipoles and the magnetic
field generated by magnetic charge of the stringy black
hole. Here we assume that the magnetic dipole has the
corresponding polarization tensor D↵� that satisfies the
following condition

D↵� = ⌘
↵��⌫

u�µ⌫ , D↵�
u� = 0 , (38)

where µ
⌫ is dipole moment of the magnetic dipole. Here

we determine the interaction term Dµ⌫Fµ⌫ using the re-
lation between the electromagnetic field tensor F↵� and
components of electric E↵ and magnetic B

↵ fields as
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Taking into account the condition given in (38) and
non-zero components of the electromagnetic field tensor
we have

D↵�
F↵� = 2µ↵B

↵ = 2µ↵̂
B↵̂ . (40)

Assume the direction of the magnetic dipole moment of
the particle is at the equatorial plane and is aligned along
the direction of magnetic field lines of the stringy black
hole. In this case the components of the dipole magnetic
moment of the particle are given as µi = (µr

, 0, 0). This
configuration allows an equilibrium state for the interac-
tion between the magnetic field and the magnetic dipole,
while other configurations of magnetic dipole moment
components can not provide the stable equilibrium. This
configuration also allows to study the particle motion and
one may avoid the relative motion problem choosing the
appropriate observer’s frame. Due to constant value of
the magnetic moment of the particle the second part of
the condition (38) is satisfied. The interaction part can
be performed using Eqs. (40) and (32) as
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F↵� =
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, (41)

where µ =
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µîµ
î is the norm of the magnetic dipole

moment of the particle.
Due to symmetric properties of the magnetic field and

spacetime one may express the action of the magnetic
dipole in the Hamilton-Jacobi equation (37) in the fol-
lowing form

S = �Et+ L�+ Sr✓(r, ✓) . (42)

Since we consider the motion at equatorial plane (✓ =
⇡/2) the Eqs. (40), (37) and (42) provide the following
equation for radial motion

ṙ
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where the e↵ective potential has the form

Ve↵(r;L,B) =
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h(r)
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with the relation

B =
µQm
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,

being a magnetic interaction parameter responsible for
the interaction between magnetic dipoles and the proper
magnetic field of the magnetically charged stringy black
hole. � = µ/(mM) is a dimensionless parameter which is
characterized by the magnetic dipole and the spacetime
parameters. � is always positive and it is for the system
when magnetized neutron star treated as test magnetic
dipole with moment µ = (1/2)BNSR
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The circular stable orbits of the magnetic dipole
around the central object can be defined by the condi-
tions
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which can be used to find the specific angular momentum
and energy of the magnetic dipole on the circular orbits:
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Figure 10 shows the radial dependence of the specific
angular momentum of a magnetic dipole around the mag-
netically charged stringy black hole. One can see from
the figure that the increase of the magnetic charge of
stringy black hole (the parameter � for magnetic dipole)
causes to decrease of the specific angular momentum of
magnetic dipoles in circular orbits and the inner circular
orbit comes closer to the central object, while the pa-
rameter � does not change the distance of last circular
orbit.
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not e↵ected by the spacetime geometry of the stringy
black hole and formally coincides with the standard New-
tonian expression.

Now one may study the dynamics of magnetic dipoles
around magnetically charged black holes using the
Hamilton-Jacobi equation [42]

g
µ⌫ @S

@xµ

@S
@x⌫

= �
 
m� 1

2
Dµ⌫

Fµ⌫

!2

, (37)

with the term Dµ⌫Fµ⌫ being responsible for the inter-
action between the magnetic dipoles and the magnetic
field generated by magnetic charge of the stringy black
hole. Here we assume that the magnetic dipole has the
corresponding polarization tensor D↵� that satisfies the
following condition

D↵� = ⌘
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u�µ⌫ , D↵�
u� = 0 , (38)

where µ
⌫ is dipole moment of the magnetic dipole. Here

we determine the interaction term Dµ⌫Fµ⌫ using the re-
lation between the electromagnetic field tensor F↵� and
components of electric E↵ and magnetic B

↵ fields as
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Taking into account the condition given in (38) and
non-zero components of the electromagnetic field tensor
we have
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F↵� = 2µ↵B

↵ = 2µ↵̂
B↵̂ . (40)

Assume the direction of the magnetic dipole moment of
the particle is at the equatorial plane and is aligned along
the direction of magnetic field lines of the stringy black
hole. In this case the components of the dipole magnetic
moment of the particle are given as µi = (µr

, 0, 0). This
configuration allows an equilibrium state for the interac-
tion between the magnetic field and the magnetic dipole,
while other configurations of magnetic dipole moment
components can not provide the stable equilibrium. This
configuration also allows to study the particle motion and
one may avoid the relative motion problem choosing the
appropriate observer’s frame. Due to constant value of
the magnetic moment of the particle the second part of
the condition (38) is satisfied. The interaction part can
be performed using Eqs. (40) and (32) as
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F↵� =
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, (41)

where µ =
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µîµ
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moment of the particle.
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spacetime one may express the action of the magnetic
dipole in the Hamilton-Jacobi equation (37) in the fol-
lowing form
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Since we consider the motion at equatorial plane (✓ =
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being a magnetic interaction parameter responsible for
the interaction between magnetic dipoles and the proper
magnetic field of the magnetically charged stringy black
hole. � = µ/(mM) is a dimensionless parameter which is
characterized by the magnetic dipole and the spacetime
parameters. � is always positive and it is for the system
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The circular stable orbits of the magnetic dipole
around the central object can be defined by the condi-
tions
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which can be used to find the specific angular momentum
and energy of the magnetic dipole on the circular orbits:
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Figure 10 shows the radial dependence of the specific
angular momentum of a magnetic dipole around the mag-
netically charged stringy black hole. One can see from
the figure that the increase of the magnetic charge of
stringy black hole (the parameter � for magnetic dipole)
causes to decrease of the specific angular momentum of
magnetic dipoles in circular orbits and the inner circular
orbit comes closer to the central object, while the pa-
rameter � does not change the distance of last circular
orbit.
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The circular stable orbits of the magnetic dipole
around the central object can be defined by the condi-
tions
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which can be used to find the specific angular momentum
and energy of the magnetic dipole on the circular orbits:
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Figure 10 shows the radial dependence of the specific
angular momentum of a magnetic dipole around the mag-
netically charged stringy black hole. One can see from
the figure that the increase of the magnetic charge of
stringy black hole (the parameter � for magnetic dipole)
causes to decrease of the specific angular momentum of
magnetic dipoles in circular orbits and the inner circular
orbit comes closer to the central object, while the pa-
rameter � does not change the distance of last circular
orbit.
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FIG. 12: ISCO radius of a magnetic dipole around magneti-
cally charged stringy black hole for the di↵erent values of the
parameter � and magnetic charge of the black hole. The top
panel provides the graphs for the di↵erent values of the pa-
rameter �, the bottom one is for the di↵erent values of the
magnetic charge of the black hole.
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3
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We plan to perform the above-mentioned study of
ISCO analyzing the motion of the magnetar SGR (PSR)
J1745–2900 orbiting around the Sgr A* approximated as
test magnetic dipole with the parameters � = 10.

For the system of the magnetar called SGR (PSR)
J1745–2900 orbiting around supermassive black hole
Sgr A* with mass M ⇡ 3.8⇥ 106M�, discovered in 2013
in radio band [84] the value of the parameter � for the
magnetar can be easily estimated based on the obser-
vational data analysis in [84] that shows the magnetic
dipole moment of the magnetar µ ⇡ 1.6 ⇥ 1032G · cm3

and mass m ⇡ 1.5M� as

� =
µPSRJ1745�2900

mPSRJ1745�2900MSgrA⇤
⇡ 10.2 . (51)

Figure 13 presents profiles of ISCO radius of a mag-
netic dipoles around: the rotating Kerr black hole;

FIG. 13: ISCO radius of a magnetic dipole around the mag-
netically charged stringy black hole, Kerr black hole and
Schwarzschild black hole immersed in the external magnetic
field for the di↵erent values of the parameter �.

Schwarzschild black hole immersed in the external mag-
netic field and the magnetically charged stringy black
hole at their proper parameters a/M 2 (0, 1), Qm 2 (0, 1)
and B 2 (0, 1), respectively. One can see that the e↵ect
of the magnetic charge Qm is stronger than the e↵ect of
the external magnetic field and it become more stronger
with increasing the parameter �.

A. Magnetically charged stringy black hole versus
rotating Kerr black hole

First we consider the motion of magnetic dipoles
and non-magnetized particles around the magnetically
charged stringy and rotating Kerr black holes, respec-
tively, and show how the magnetic charge of stingy black
hole can mimic spin of rotating Kerr black hole and gives
the same ISCO radius.

FIG. 14: Relations between spin of the rotating Kerr black
hole and magnetic charge of stringy black hole giving the same
ISCO radius for the di↵erent values of the parameter � .

Figure 14 illustrates the relation between rotation pa-
rameter of rotating Kerr black hole and magnetic charge
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not e↵ected by the spacetime geometry of the stringy
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with the term Dµ⌫Fµ⌫ being responsible for the inter-
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field generated by magnetic charge of the stringy black
hole. Here we assume that the magnetic dipole has the
corresponding polarization tensor D↵� that satisfies the
following condition

D↵� = ⌘
↵��⌫

u�µ⌫ , D↵�
u� = 0 , (38)

where µ
⌫ is dipole moment of the magnetic dipole. Here

we determine the interaction term Dµ⌫Fµ⌫ using the re-
lation between the electromagnetic field tensor F↵� and
components of electric E↵ and magnetic B

↵ fields as

F↵� = w↵E� � w�E↵ � ⌘↵���w
�
B

�
. (39)

Taking into account the condition given in (38) and
non-zero components of the electromagnetic field tensor
we have

D↵�
F↵� = 2µ↵B

↵ = 2µ↵̂
B↵̂ . (40)

Assume the direction of the magnetic dipole moment of
the particle is at the equatorial plane and is aligned along
the direction of magnetic field lines of the stringy black
hole. In this case the components of the dipole magnetic
moment of the particle are given as µi = (µr

, 0, 0). This
configuration allows an equilibrium state for the interac-
tion between the magnetic field and the magnetic dipole,
while other configurations of magnetic dipole moment
components can not provide the stable equilibrium. This
configuration also allows to study the particle motion and
one may avoid the relative motion problem choosing the
appropriate observer’s frame. Due to constant value of
the magnetic moment of the particle the second part of
the condition (38) is satisfied. The interaction part can
be performed using Eqs. (40) and (32) as

D↵�
F↵� =

2µQm

r2
, (41)

where µ =
q

µîµ
î is the norm of the magnetic dipole

moment of the particle.
Due to symmetric properties of the magnetic field and

spacetime one may express the action of the magnetic
dipole in the Hamilton-Jacobi equation (37) in the fol-
lowing form

S = �Et+ L�+ Sr✓(r, ✓) . (42)

Since we consider the motion at equatorial plane (✓ =
⇡/2) the Eqs. (40), (37) and (42) provide the following
equation for radial motion

ṙ
2 = E2 � Ve↵(r;L,B) , (43)

where the e↵ective potential has the form

Ve↵(r;L,B) =
f(r)

h(r)
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+
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#
(44)

with the relation

B =
µQm

m
,

being a magnetic interaction parameter responsible for
the interaction between magnetic dipoles and the proper
magnetic field of the magnetically charged stringy black
hole. � = µ/(mM) is a dimensionless parameter which is
characterized by the magnetic dipole and the spacetime
parameters. � is always positive and it is for the system
when magnetized neutron star treated as test magnetic
dipole with moment µ = (1/2)BNSR

3

NS
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a supermassive black hole (SMBH)
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. (45)

The circular stable orbits of the magnetic dipole
around the central object can be defined by the condi-
tions

V
0
e↵

= 0 , V
00
e↵

� 0 , (46)

which can be used to find the specific angular momentum
and energy of the magnetic dipole on the circular orbits:
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where F(r) = 2M(Q2

m + r
2)� r

�
6M2 +Q

2

m

�
.

Figure 10 shows the radial dependence of the specific
angular momentum of a magnetic dipole around the mag-
netically charged stringy black hole. One can see from
the figure that the increase of the magnetic charge of
stringy black hole (the parameter � for magnetic dipole)
causes to decrease of the specific angular momentum of
magnetic dipoles in circular orbits and the inner circular
orbit comes closer to the central object, while the pa-
rameter � does not change the distance of last circular
orbit.
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FIG. 12: ISCO radius of a magnetic dipole around magneti-
cally charged stringy black hole for the di↵erent values of the
parameter � and magnetic charge of the black hole. The top
panel provides the graphs for the di↵erent values of the pa-
rameter �, the bottom one is for the di↵erent values of the
magnetic charge of the black hole.
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We plan to perform the above-mentioned study of
ISCO analyzing the motion of the magnetar SGR (PSR)
J1745–2900 orbiting around the Sgr A* approximated as
test magnetic dipole with the parameters � = 10.

For the system of the magnetar called SGR (PSR)
J1745–2900 orbiting around supermassive black hole
Sgr A* with mass M ⇡ 3.8⇥ 106M�, discovered in 2013
in radio band [84] the value of the parameter � for the
magnetar can be easily estimated based on the obser-
vational data analysis in [84] that shows the magnetic
dipole moment of the magnetar µ ⇡ 1.6 ⇥ 1032G · cm3

and mass m ⇡ 1.5M� as

� =
µPSRJ1745�2900

mPSRJ1745�2900MSgrA⇤
⇡ 10.2 . (51)

Figure 13 presents profiles of ISCO radius of a mag-
netic dipoles around: the rotating Kerr black hole;

FIG. 13: ISCO radius of a magnetic dipole around the mag-
netically charged stringy black hole, Kerr black hole and
Schwarzschild black hole immersed in the external magnetic
field for the di↵erent values of the parameter �.

Schwarzschild black hole immersed in the external mag-
netic field and the magnetically charged stringy black
hole at their proper parameters a/M 2 (0, 1), Qm 2 (0, 1)
and B 2 (0, 1), respectively. One can see that the e↵ect
of the magnetic charge Qm is stronger than the e↵ect of
the external magnetic field and it become more stronger
with increasing the parameter �.

A. Magnetically charged stringy black hole versus
rotating Kerr black hole

First we consider the motion of magnetic dipoles
and non-magnetized particles around the magnetically
charged stringy and rotating Kerr black holes, respec-
tively, and show how the magnetic charge of stingy black
hole can mimic spin of rotating Kerr black hole and gives
the same ISCO radius.

FIG. 14: Relations between spin of the rotating Kerr black
hole and magnetic charge of stringy black hole giving the same
ISCO radius for the di↵erent values of the parameter � .

Figure 14 illustrates the relation between rotation pa-
rameter of rotating Kerr black hole and magnetic charge
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Conclusion

• The electric charge of a static stringy black hole can completely mimic 
the rotation parameter of a Kerr black hole in the case of charged 
particle motion.

• The magnetic charge parameter of the magnetically charged particle 
can mimic the black hole spin parameter up to a ∼ 0.8.

• The magnetic charge of the stingy black hole can mimic the spin 
parameter of Kerr black hole up to a∼0.85.
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