
Missing bright red giants in the Galactic

center: A fingerprint of its once active state?

RAGtime 22 (Dedicated to Prof. Zdeněk Stuchĺık)
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First of all: Happy Birthday! Všechno nejlepš́ı!
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Motivation: It all started at RAGtime 21 in Opava!!!

Anabella Araudo’s talk at RAGtime 21: “Truncation of AGN jets by their

interaction with a stellar cluster”
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Motivation: It all started at RAGtime 21 in Opava!!!

Anabella Araudo’s talk at RAGtime 21: “Truncation of AGN jets by their

interaction with a stellar cluster”. Anabella showed this illustration by

Maxim Barkov:

Barkov+(2012): Interaction of a red giant with a powerful AGN jet.

What happens to the star?
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Discovery of missing red giants

• discovery paper of Kristen Sellgren (now Emerita Professor, Ohio

State University) from 1990
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Discovery of missing red giants

• discovery paper of Kristen Sellgren (now Emerita Professor, Ohio

State University) from 1990
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Discovery of missing red giants

• discovery paper of Kristen Sellgren (now Emerita Professor, Ohio

State University) from 1990
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Motivation

• flattening of the surface-brightness profile of brighter late-type

stars

• fainter late-type stars as well as young OB stars have cusp-like

profiles

Surface density profiles of early- (green) and late-type (red) stars by

Buchholz+09:
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Observational results: surface-brightness profiles

• fainter gaints show a cusp-like profile (Habibi+19, Schoedel+20)

• brighter late-type stars of Ks = 14.5− 14.0 mag have a flat to a

decreasing surface density profile

Results from Schoedel+2020: α14.5 = 0.13± 0.32, α15.5 = −0.26± 0.15,

α16.5 = −0.49± 0.14, α17.5 = −0.59± 0.14, α18.5 = −0.27± 0.11
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Motivation

• Key question: What mechanism is responsible for a stellar cusp

of fainter late-type stars and a flat, core-like profile of brighter

red giants?

• Schoedel+2020 found that 80% of the stellar mass formed > 10 Gyr

ago

• two-body (non-resonant) relaxation time (in the inner parsec):

τrelax =
0.34σ3

G 2m?ρ? log Λ
∼ 1.3× 109 yr (1)

• most (∼ 80%) of the late-type stars are expected to be relaxed →
Bahcall-Wolf-like cusp should be present with the 3D slope of

ρ(r) ∝ r−1.5 (Solar-mass stars) and γ ≈ −2 for stellar black holes

(Alexander 2017)
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Observational results: surface-brightness profiles

• apart from the brightest late-type stars with Ks = 14.5− 14.0 mag,

fainter gaints show a cusp-like profile (Habibi+19, Schoedel+20)

Results from Schoedel+2020: α14.5 = 0.13± 0.32, α15.5 = −0.26± 0.15,

α16.5 = −0.49± 0.14, α17.5 = −0.59± 0.14, α18.5 = −0.27± 0.11
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Observational results: surface-brightness profiles

• Habibi+19 found that ∼ 4− 5 bright giants (Ks < 15.5) could be

missing within ∼ 0.04pc

• Gallego-Cano+18 estimate ∼ 100 missing bright giants within the

inner ∼ 0.3 pc

Habibi+19 infer that atmosphere radii of late-type stars . 30R� at

. 0.2 pc:
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Explanations of the missing bright giants

• a process that preferantially acts upon extended, large giants and

leaves smaller, fainter giants as well as young OB stars intact →
alternation of spatial, temperature, and/or luminosity distribution

• several scenarios proposed within the last 30 years:

(a) tidal disruption of red giants by the SMBH (Hills 1975;

Bogdanovic+2014; King 2020),

(b) red giant–accretion disc (clumps) collisions (Armitage+1996;

Amaro-Seoane & Chen 2014; Kieffer & Bogdanovic 2016),

(c) collisions of red giants with field stars and compact remnants

(Phinney 1989; Morris 1993; Genzel+1996),

(d) mass segregation effects: the infall of a secondary massive black

hole (Baumgardt+2006; Merritt & Szell 2006) or the infall of a

massive cluster (Kim & Morris 2003; Ernst+2009, Antonini+2012)

or the dynamical segregation of stellar black holes (Morris 1993).
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Novel scenario

We propose a novel scenario: ablation or “shaving off” of red giants

in the jet–star interactions

jet
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  after several encounters
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Model set-up

• jet kinetic luminosity and duration based on γ-ray Fermi

bubbles/bipolar radio bubbles/X-ray chimneys (Su+2010;

Heywood+2019; Ponti+2019)

• overall energy content of 1056 − 1057 erg (Bland-Hawthorn+2019)

• Guo & Mathews(2012) can reproduce the γ-ray Fermi bubbles 50◦

north and south of the Galactic plane by an AGN jet duration of

0.1–0.5Myr → Lj ≈ 1056−57 erg/(0.1− 0.5Myr) =

6.3× 1042 − 3.2× 1044 erg s−1 . LEdd ∼ 5× 1044 erg s−1

• jet active 4± 1 Myr due to the higher accretion activity: infall of gas

cloud at least 10 000M� (Su & Finkbeiner 2012), potentially related

to the observed stellar disks!? (Ali+2020)
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Model set-up

Image credit: David A. Aguilar (Harvard-Smithsonian Center for

Astrophysics) 16



Results

• stagnation radius profile as a function of distance and jet luminosity

Pj = Psw → Rstag = z tan θ
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Results

• jet-induced envelope removal (single passage)
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Porb
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Results

• jet-induced envelope removal – effect of multiple passages

• cumulative mass loss comparable to star–disc collisions as well as

stellar-wind losses

∆M ∼ ncross∆M1
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Results

• ablated red giants become warmer/“bluer” Tabl = T0(R0/Rabl)
1/2

• ablated red giants become fainter in the NIR domain

Labl ≈ L0(Rabl/R0)3/2
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Results

• a number of red giants crossing the jet per orbital period consistent

with the inferred number of missing bright red giants at 0.04 and 0.3

pc: 4-5 (Habibi+2019) and 100 (Gallego-Cano+2018), respectively
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Results - Demonstration on the surface stellar profiles

• we generated a mock nuclear stellar cluster with the initial

nRG = n0(z/z0)−γ with γ ∼ 1.43 according to Gallego-Cano+2018

(4000 late-type stars in total)

201510505101520
RA [arcsec]

20

15

10

5

0

5

10

15

20
DE

C 
[a

rc
se

c]

22



Results - Demonstration on the surface stellar profiles
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Results - Main conclusions

• in comparison with the no-jet scenario, the active Seyfert-like jet

flattens the surface profile of the brightest red giants (10-12

mag, intrinsic), starting within the inner arcsecond (0.04 pc)

• for the most luminous jet (1044 erg s−1), the core-like profile extends

up to 0.4 pc for the brightest gianst

• fainter giants (> 14 mag, intrinsic) keep the cuspy profile within the

S cluster for all jet luminosities

• young OB stars are left intact because of their powerful winds
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Results - Unification scheme

• tidal disruption of red giants, jet-ablation, and star-disc collisions

coexisted likely simultaneously but on different spatial scales
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Results - Paper Accepted by ApJ

arXiv:2009.14364
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