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Motivation

The ‘biggest’ blunder?
The Cosmological Constant Λ has a history as long as GR itself: introduced by Einstein in 1917 to
make a static universe, abandoned after Hubble’s discovery of the cosmological expansion, and
reintroduced again to explain the accelerated expansion of the Universe (Riess, 1998).

Non-zero Λ?
Observations of the CMB indicate that the ‘dark energy’ must be very close to the vacuum energy
which can be described by a positive cosmological constant Λ ∼ 10−52m−2 (Ade, 2016).

Type Ia Supernovae and Λ

Observations of SNe Ia with z ∼ 1, provided evidence that we may live in a low mass-density
Universe: ΩM ∼ 0.3,⇒ ΩΛ ∼ 0.7 (Perlmutter, 1999).
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Astrophysical implications of Λ

GEODEs
GEneric Objects of Dark Energy (Croker, Nishimura, and Farrah, 2019) are an alternative to black
holes, whose interior is described by the ‘dark energy’ EOS. Examples: de Sitter sphere (Gliner,
1966) and the gravastar (Mazur and Mottola, 2001), formed in the limit of radially decreasing
constant-density stars (Mazur and Mottola, 2015; Posada, 2017; Posada and Chirenti, 2019;
Chirenti, Posada, and Guedes, 2020).

Relativistic compact objects in the presence of Λ in
Extension of the interior Schwarzschild solution with Λ (Stuchlı́k, 2000).

Λ modifies the Buchdahl bound on the mass-radius ratio M/R (Boehmer, 2004).

The role of Λ in the stability of compact objects
Radial stability of relativistic fluid spheres using Chandrasekhar’s framework (Boehmer and
Harko, 2005; Stuchlı́k and Hledı́k, 2005).
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Polytropes are still relevant!

NS EOS
A long outstanding problem in nuclear physics is determining the correct equation of state (EOS)
for cold matter above nuclear saturation density. The only locations in the universe where such
matter is believed to exist are the cores of neutron stars (NS). A current goal of relativistic
astrophysics is to use NS measurements to constrain the nuclear EOS.

‘Piecewise’ polytropes
Read et al., 2009, proposed the piecewise polytropes (PPs), where the high density region of the
NS is approximated by a sequence of polytropic EOS. This approach has been improved by a
number of authors (Lindblom, 2010; Alvarez-Castillo and Blaschke, 2017; O’Boyle et al., 2020).

Objective
The purpose of this project was to carry on a detailed study of the role of Λ in the stability of the
polytropic fluid spheres, using two different methods, namely, the dynamical approach developed
by Chandrasekhar and the critical point method.
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Polytropic spheres with Λ

TOV with Λ

Polytropic fluid spheres (Tooper, 1964),

p = Kρ1+(1/n), n = polytropic index.

‘Relativistic’ parameter σ = (pc/ρc c2).

TOV equation with Λ

dp

dr
= −(ε+ p)

(G/c2)m(r) +
[
(4πG/c4)pΛ

3

]
r3

r2
[
1− 2Gm(r)

c2r
− Λ

3
r2
] ; m(r) = 4π

∫ r

0
ρ(r)r2 dr

Radial profiles of the mass density and pressure of the polytropic spheres are given by the
relations

ρ = ρcθ
n , p = pcθ

n+1 .

θ(x) is a function of the dimensionless radius x ≡ r/L,

L ≡
[
σ(n+ 1)c2

4πGρc

] 1
2

, ⇒ characteristic length scale of the polytropic sphere.
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Structure equations with Λ

To facilitate the numerical computations, it is convenient to introduce dimensionless quantities

v(x) ≡
m(r)

M
; M = 4πL3ρc =

c2

G
σL(n+ 1)

λ ≡ ρvac/ρc = Λc4/8πGρc.

Structure equations for polytropes with Λ

dθ

dx
=

[(
2λ

3
− σθn+1

)
x−

v

x2

]
(1 + σθ) grr ,

dv

dx
= x2θn,

where

grr ≡
[
1− 2σ(n+ 1)

(
v

x
+
λ

3
x2

)]−1

.

BCs: θ(0) = 1 , v(0) = 0.

The radius x = x1 of the configuration is determined as the first solution of θ(x) = 0.
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Dynamical instability via Chandrasekhar’s approach

Condition of dynamical stability in Newtonian theory: γ > 4/3.

Relativistic theory of infinitesimal, adiabatic, radial oscillations†.

Configuration in hydrostatic equilibrium (TOV equations)

ds2 = −e2Φ(t,r)(c dt)2 + e2Ψ(t,r)dr2 + r2(dθ2 + sin2 θ dφ2).

Perturbations preserve the spherical symmetry:

q(r, t) = q0(r) + δq(r, t) , q ≡ (Φ,Ψ, ε, p, n).

Stability criterion→ normal mode analysis

ξ(r, t) = ξ(r)e−iωt.

ξ represents the Lagrangian displacement, and ω is the frequency of the oscillations.

ω2 > 0 (stable); ω2 < 0 (unstable); ω2 = 0 (marginally stable).

Is the Newtonian lower limit 4/3 on γ affected by GR? Yes, it is ,

γc >
4

3
+

19

42

(
RS

R

)
+O

[(
RS

R

)2
]
, ⇒ Constant-density stars.

†S. Chandrasekhar (1964). Astrophys. J. 140, pp. 417–433
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Sturm-Liouville dynamical equation with Λ

Sturm-Liouville dynamic ‘pulsation’ equation with Λ

d

dr

(
P

dζ

dr

)
+
(
Q+ ω2W

)
ζ = 0 , ζ ≡ r2e−Φ0ξ

W (r) ≡
ε0 + p0

r2
eΦ0+3Ψ0 , P (r) ≡

γp0

r2
e3Φ0+Ψ0 , γ =

1

p∂N/∂p

[
N − (p+ ε)

∂N

∂ε

]
,

Q(r) ≡
e3Φ0+Ψ0

r2

[
(p′0)2

ε0 + p0
−

4p′0
r
−
(

8πG

c4
p0 − Λ

)
(ε0 + p0)e2Ψ0

]
.

BCs: ξ = 0, at the origin; and δp = 0, at the boundary r = R.
The marginally stable condition ω2 = 0 provides the critical adiabatic index γc. Thus, if
γ < γcr dynamical instability will ensue and the configuration will collapse!.
Λ modifies the relativistic lower limit on γ (Boehmer and Harko, 2005),

γc >
4/3− l
1− 3l

+
19

42

(
1−

21

19
l

)(
RS

R

)
+O

[(
RS

R

)2
]
, l ≡

Λc4

12πGεc
.

Our task: extension of these results for polytropic spheres
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Critical adiabatic index for polytropes with Λ

Methods

∗ We determined
γc numerically via
two methods:

Shooting
method

Trial
functions

∗ Restriction by
the causality limit

σ < σcausal =
n

n+ 1
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Differences of the critical adiabatic index γcr, for the polytropes n = {1.0, 1.5, 2.0, 2.5}, of
the values for λ ∈ [10−6, 10−3] from their corresponding values with λ = 0.
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Critical σ determined via the dynamical approach
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The stability domain as determined by 〈γ〉 > γc. The values of γc were computed via the
shooting method.
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Critical σ determined via the critical point method
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Total mass (black line) and rest mass (green line), as a function of σ, for some polytropic
spheres for different values of λ. The maximum of the curve for the total mass determines
the critical value of σ for stability; thus, it separates the stable and unstable regions.
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Stability domain in the n− σ space
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Conclusions
We found that large values of λ rise the critical adiabatic index γc relative to their
corresponding values for zero λ. Thus, the cosmological constant tends to destabilize the
polytropes.

Our results show that the critical point method and the theory of radial oscillations predict
different values of the critical parameter σcr for nonzero λ.

Finally, we would like to remark that the role of the vacuum energy on the radial stability of
polytropic spheres becomes relevant for the parameter λ sufficiently large, it is negligible for λ
smaller than 10−4 and becomes significant for λ comparable to 10−1.
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