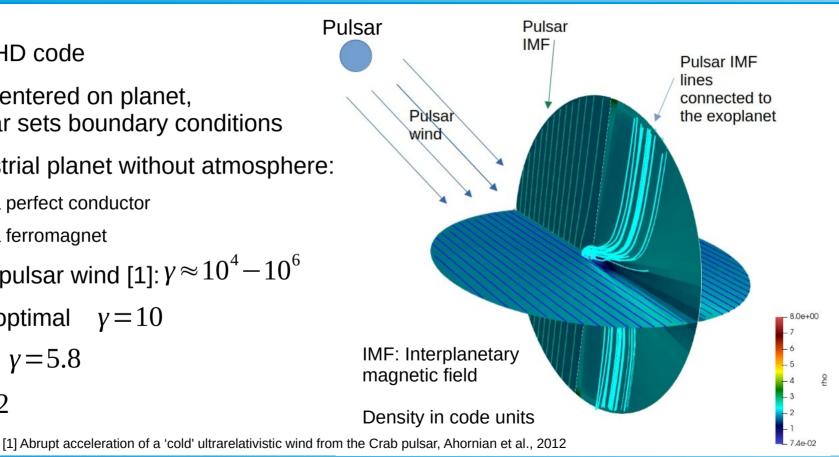
Simulation of a planet in highly relativistic pulsar wind


Tanja Kaister, Centrum Astronomiczne im. Mikołaja Kopernika

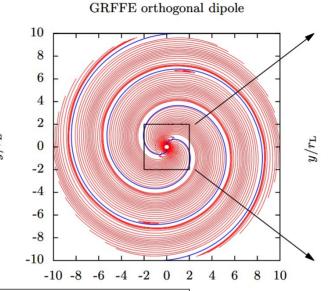
Motivation

- First exoplanets were discovered around a pulsar
- Only 7 confirmed pulsar planets (NASA exoplanet archive)
 - All found with the pulsar timing method
 - Only tells where the planet is, nothing about the conditions
- Close to pulsar means high local magnetic field
- Synchrotron emission in interplanetary magnetic field near planet
- Determine whether current radioemission detectors are sensitive enough

Setup of the simulation

- PLUTO RMHD code
- Simulation centered on planet, distant pulsar sets boundary conditions
- Model terrestrial planet without atmosphere:
 - Planet is a perfect conductor
 - Planet is a ferromagnet
- For realistic pulsar wind [1]: $\gamma \approx 10^4 10^6$
- Simulation: optimal y=10
- Conductive: $\gamma = 5.8$
- Ferro: $\gamma = 3.2$

List of simulation parameters (conductive case)

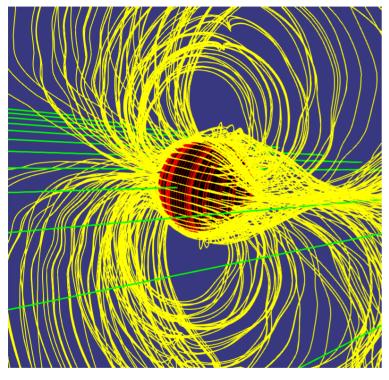

Planet	SWDens [g/cm³]	SWSpeed [cm/s]	SWTemp [K]	SWMagField [G]	PlanetRad [cm]	
Real terrestrial planets (Wolszczan's planets)						
PSR B1257+12 b	3.1×10^{-24}	2.953×10^{10}	5.0×10^{8}	4.1×10^{-2}	2.0×10^{8}	
PSR B1257+12 c	3.1×10^{-24}	2.953×10^{10}	5.0×10^{8}	2.1×10^{-2}	1.0×10^{9}	
PSR B1257+12 d	3.1×10^{-24}	2.953×10^{10}	5.0×10^{8}	1.6×10^{-2}	7.5×10^{8}	
Theoretical terrestrial planet						
	3.1×10^{-17}	2.953×10^{10}	5.0×10^{8}	3.6	5.0×10^{8}	
Diamond planet						
PSR J0636+5129 b	3.1×10^{-18}	2.953×10^{10}	5.0×10^{8}	9.9	5.0×10 ⁹	

Diamond planets

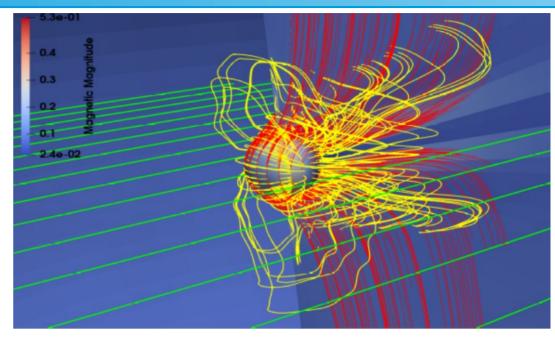
- Mass of order M_J
- High density
- Suspected origin:
 - Stripped core of gas giant
 - Brown dwarf

Pulsar magnetic field structure

- Dipole field up to light cylinder radius r_L
- Spiral structure outside r_L
- Local magnetic field is determined by location and pulsar rotation speed
- Example: 2 ways to reach 3.6G



2 [//	//////			
1 -				
0 -				\\
-1				
-2				
-2	-1	0	1	2
		$x/r_{ m L}$		

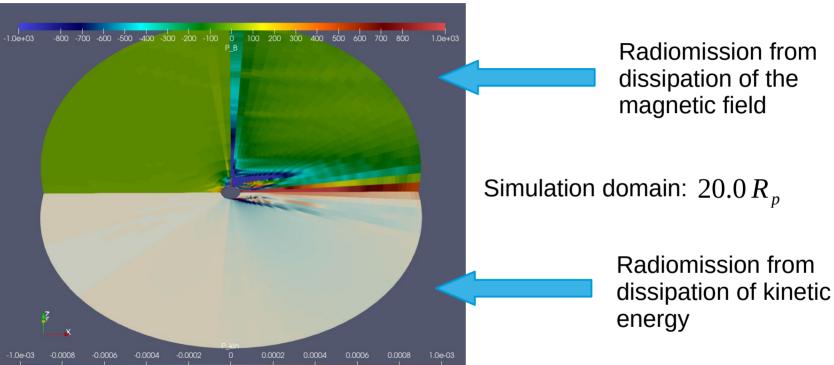

Orbital Radius [cm]	NSPeriod [ms]
1.2×10^{12}	1.0
3.4×10^{10}	6.0

[2] Theory of pulsar magnetosphere and wind, Pétri, 2016

Planetary magnetic field and currents – conductive case

y=5.8, this work

 $\gamma = 2.0$, Mishra et al (2023)


Red: magnetic field line

Yellow: current

[3] Auroras on Planets around Pulsars, Mishra et al., 2023

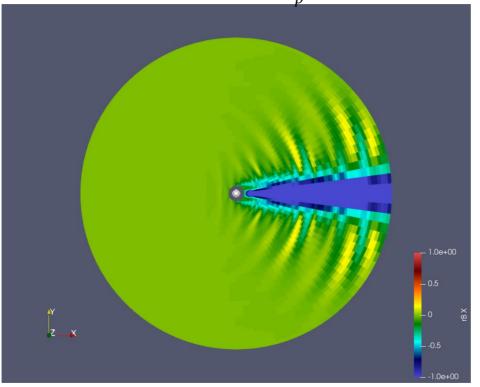
Radioemission sources – conductive case

Scale [W]: $-1.0 \times 10^3 - 1.0 \times 10^3$

-1.0e

Pulsar

(far outside


simulation

domain)

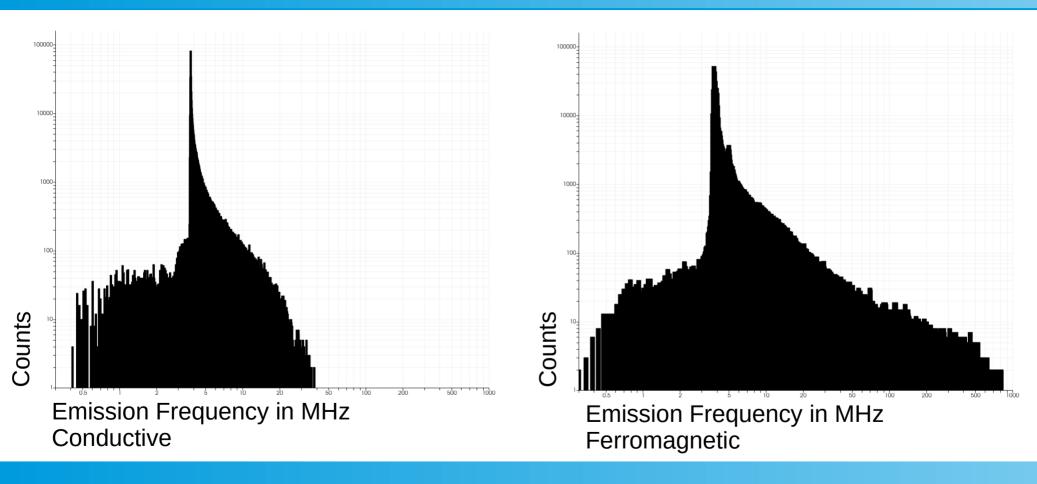
Scale [W]: $-1.0\times10^{-3}-1.0\times10^{-3}$

Conductive diamond planet magnetic field wave

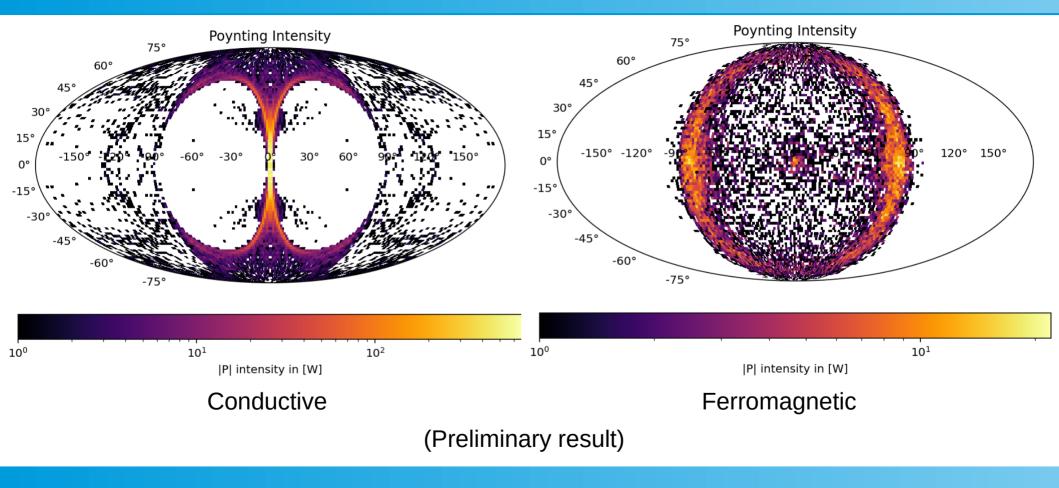
Simulation domain: $20.0 R_n$

Scale [G]: -1.0-1.0

Pulsar


(far outside simulation domain)

- Shown: X-component of magnetic field
- Transversal wave with phase velocity

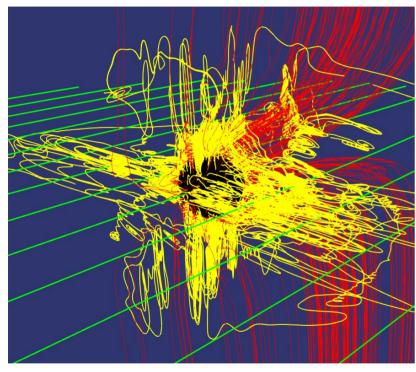

$$v_p = 2.5 \times 10^6 \text{ m/s}$$

 Only appears for diamond planet

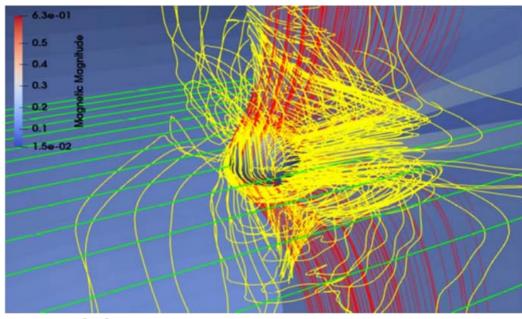
Emission bandwidth

Emission distribution

Detection of emission on earth


Planet	Fake Planet	Mishra	PSR B1257+12 b	PSR B1257+12 c	PSR B1257+12 d	PSR 30636+5129 b
$\Phi_a(750) [\text{mJy}]$	$4.45 \times 10^{\circ}$	4.64×10^{-1}	7.82×10^{-2}	2.32×10^{-1}	1.21×10^{-1}	3.81×10^{3}
$\Phi_b(250) [{ m mJy}]$	4.01×10^{3}	4.18	7.04×10^{-1}	2.09	1.09	3.43×10^4
$\Phi_c(100) [\text{mJy}]$	2.51×10^4	2.61×10^{1}	4.40	1.31×10^{1}	6.79	2.14×10^5
γ	5.798	2.0	5.798	5.798	5.798	5.798
P_{radio} [W]	1.04×10^{20}	3.53×10^{13}	4.08×10^{13}	7.74×10^{13}	3.01×10^{13}	4.01×10^{20}
$\Delta\omega(80\%)$ [MHz]	4.367	0.001	0.006	0.004	0.003	1.247
Ω	4.011	5.705	6.527	6.249	6.235	6.335
$\omega_{max,obs}[{ m MHz}]$	116.751	0.115	0.176	0.093	0.073	43.694
LOFAR (750)	YES	NO	NO	NO	NO	YES
MeerKAT (750)	YES	NO	NO	NO	NO	YES
SKA (750)	YES	NO	NO	NO	NO	YES

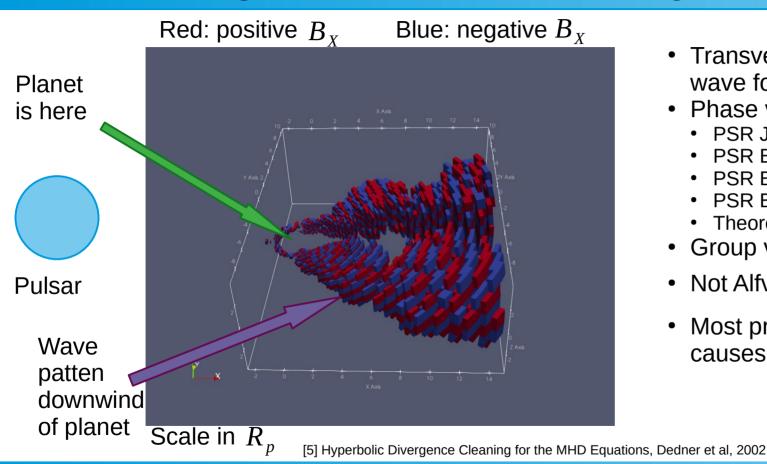
- Minimum sensitivities of LOFAR and MeerKAT and SKA are of the order of 0.1, 0.01, and 0.001 mJy
- Earth's ionosphere absorbs fequencies below 10MHz
- Flux at a distance is calculated with a formula from reference [4]


[3] Auroras on Planets around Pulsars, Mishra et al., 2023

[4] Pulsar-Planet Interaction, Mendez, 2025

Magnetic field and currents – ferromagnetic case

y=3.2, this work


 $\gamma = 2.0$, Mishra et al (2023)

Red: magnetic field line

Yellow: current

[3] Auroras on Planets around Pulsars, Mishra et al., 2023

Magnetic wave – ferromagnetic case

- Transversal magnetic field wave for all planets
- Phase velocities:
- PSR J0636+5129 b v_p =2.0×10⁶ m/s
 PSR B1257+12 b v_p =1.6×10⁶ m/s
 PSR B1257+12 c v_p =1.8×10⁶ m/s
 PSR B1257+12 d v_p =1.7×10⁶ m/s
 Theoretical planet v_p =1.7×10⁶ m/s
 Group velocity is 0
- Not Alfvén
- Most probable numerical causes [5] could be ruled out

Conclusion

- Conductive simulation more trustworthy than ferromagnetic
- Diamond planet visible according to simulation
 - Need observational data
- Method suitable to probe pulsar wind
 - Need high surrounding magnetic fields
 - Close in planets
 - Planets around fast-rotating pulsars
- Method independent of planet size
- Origin of magnetic field wave unclear