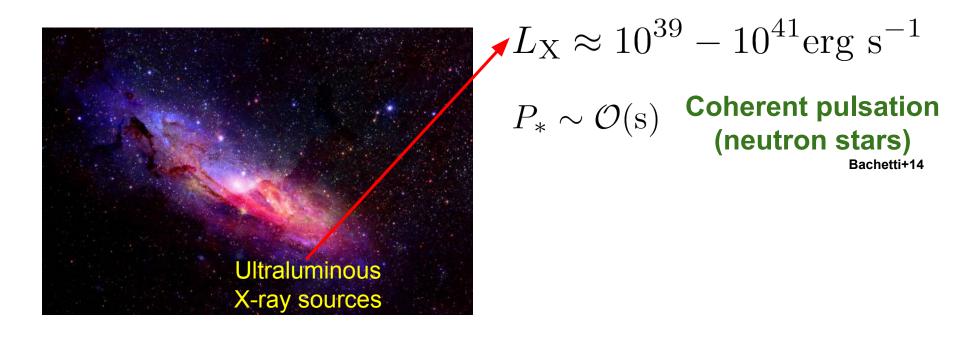
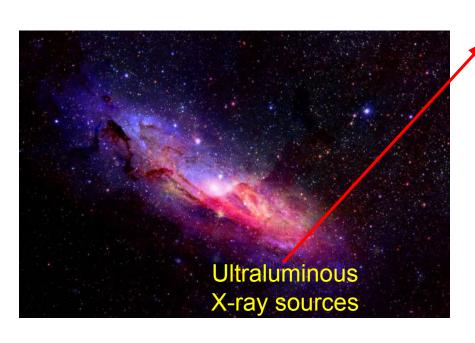
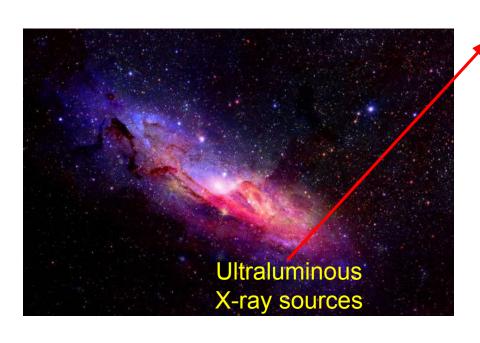

Magnetic vs. Relativistic Disk Precession Models for QPOs in PULX Sources


Sukalpa Kundu


Supervisors: Włodek Kluźniak, Miljenko Čemeljić

Work done at: CAMK PAN, Warsaw



$$L_{\rm X} \approx 10^{39} - 10^{41} \rm erg \ s^{-1}$$

 $P_* \sim \mathcal{O}(\mathrm{s})$ Coherent pulsation (neutron stars)

Bachetti+14

Pulsating Ultraluminous X-Ray Sources (PULX)

$$L_{\rm X} \approx 10^{39} - 10^{41} \rm erg \ s^{-1}$$

 $P_* \sim \mathcal{O}(\mathrm{S})$ Coherent pulsation (neutron stars)

Bachetti+14

Pulsating Ultraluminous X-Ray Sources (PULX)

$$L_{\rm Edd,\odot} = 1.3 \times 10^{38} \rm erg \ s^{-1}$$

Luminosity much higher than Eddington luminosity for neutron stars

Magnetar vs Beaming

Magnetar Model:

$$L_{\rm Edd} \approx \frac{4\pi GM m_{\rm p} c}{\sigma_{\rm T}}$$

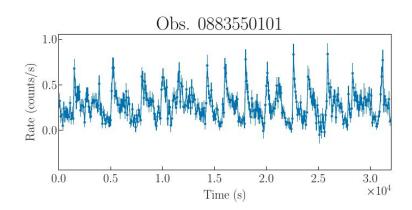
At B~10¹⁴G, The free electron scattering opacity reduces sharply and increases the Eddington luminosity (Paczynski 92)

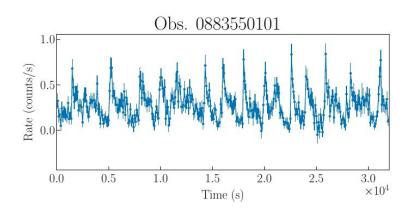
Magnetar vs Beaming

Magnetar Model:

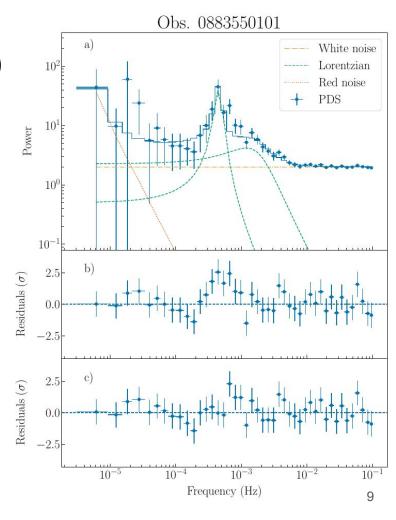
$$L_{\rm Edd} \approx \frac{4\pi GM m_{\rm p}c}{\sigma_{\rm T}}$$

At B~10¹⁴G, The free electron scattering opacity reduces sharply and increases the Eddington luminosity (Paczynski 92)

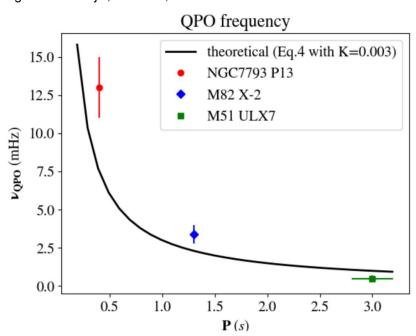

Beaming Model:


The emitted radiation is beamed instead of being isotropic.

$$L_{\rm obs} = L_{\rm Edd}/b \label{eq:Lobs}$$
 (King+01)

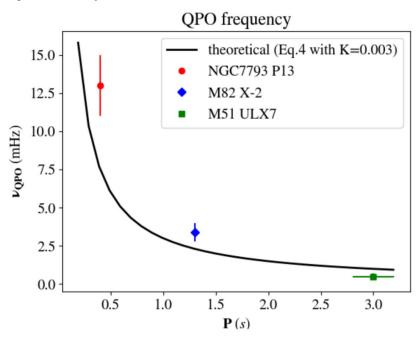

Quasi-Periodic Oscillations (QPOs)

Quasi-Periodic Oscillations (QPOs)



Figs from Imbrogno+24, ULX-7 M51

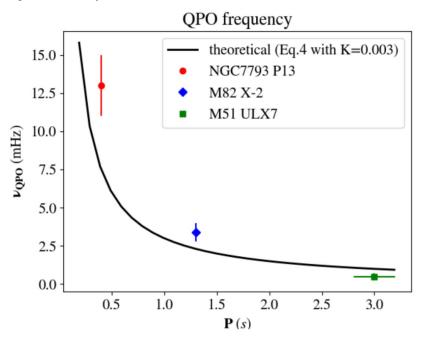
PULX mHz QPOs: The Problem


Fig from Čemeljić, Kluźniak, Kundu 25.

Till date, we have only three PULX sources that show QPOs in mHz range

PULX mHz QPOs: The Problem

Fig from Čemeljić, Kluźniak, Kundu 25.

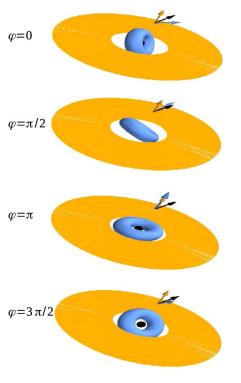

Till date, we have only three PULX sources that show QPOs in mHz range

Observation: QPO frequency and Spin Period are inversely related

(Čemeljić, Kluźniak, Kundu 25)

PULX mHz QPOs: The Problem

Fig from Čemeljić, Kluźniak, Kundu 25.

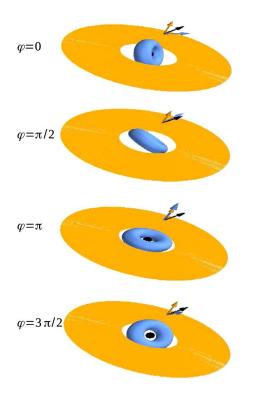


Till date, we have only three PULX sources that show QPOs in mHz range

Observation: QPO frequency and Spin Period are inversely related (Čemeljić, Kluźniak, Kundu 25)

Possible Models: General Relativistic Precession vs Magnetic Precession

Case 1. The Lense-Thirring Precession

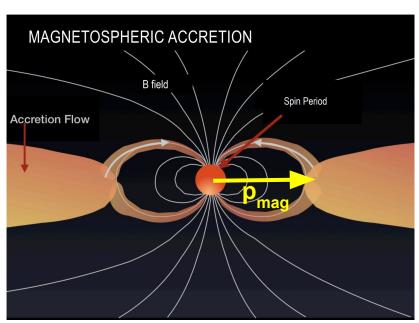


$$2\pi\nu_{\rm LT} = \frac{2a_*cr_{\rm g}^2}{r^3}$$

 a_* : dimensionless spin parameter

 $r_{\rm g}$: gravitational radius

Case 1. The Lense-Thirring Precession



$$2\pi\nu_{\rm LT} = \frac{2a_*cr_{\rm g}^2}{r^3}$$

 a_* : dimensionless spin parameter

 $r_{\rm g}$: gravitational radius

QPO frequency, spin period from observation provides **radial distance** (*r*) of LT precession

Disk truncation via magnetic pressure

Fig from https://meetings.iac.es/NS-EWASS-2015/talks/461dangelo_S11.pdf

$$r_{\rm LT} >> r_{\rm M} = \eta \left(\frac{\mu^4}{GM\dot{M}^2}\right)^{2/7}$$

(Čemeljić, Kluźniak, Kundu 25)

 Table 2. PULX Properties
 Table from Čemeljić, Kluźniak, Kundu 25.

Parameter	ULX-7 M51	M82 X-2	NGC 7793 P13
$a_* [10^{-4}]$	1.3	2.8	9.1
$r_{\rm LT} [10 {\rm km}]$	4.6	3.2	3.3

Non-beamed models: Magnetic field estimated from spin-up/down rates

 Table 2. PULX Properties
 Table from Čemeljić, Kluźniak, Kundu 25.

Parameter	ULX-7 M51	M82 X-2	NGC 7793 P13			
$a_* [10^{-4}]$	1.3	2.8	9.1			
$r_{\rm LT}$ [10 km]	4.6	3.2	3.3			
Non-beamed models						
$\lambda_{ m Edd}$	20	200	50			
$B [10^{12} \text{ G}]$	0.8–70	>10	5			
$r_{\rm M}[10~{\rm km}]$	16-210	36	36			

Non-beamed models: Magnetic field estimated from spin-up/down rates

Beamed models: King, Lasota, Kluzniak 2017 - magnetospheric accretion + beaming

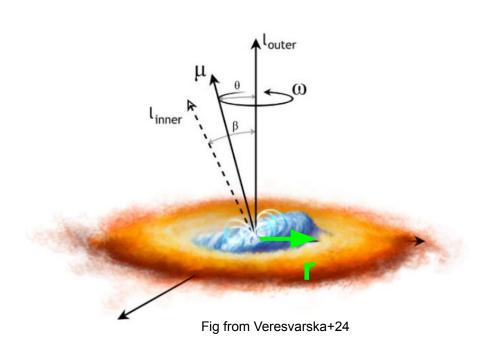
 Table 2. PULX Properties
 Table from Čemeljić, Kluźniak, Kundu 25.

ULX-7 M51	M82 X-2	NGC 7793 P13				
1.3	2.8	9.1				
4.6	3.2	3.3				
Non-beamed models						
20	200	50				
0.8–70	>10	5				
16-210	36	36				
Beaming model						
0.09	0.06	0.18				
1.8	12	9				
0.69-19	10					
2.1–14	6	2				
	1.3 4.6 Non-beam 20 0.8–70 16-210 Beamin 0.09 1.8 0.69–19	1.3 2.8 4.6 3.2 Non-beamed models 20 200 0.8–70 >10 16-210 36 Beaming model 0.09 0.06 1.8 12 0.69–19 10				

Notes. The radial distance, $r_{\rm LT}$, at which the Lense-Thirring precession frequency of the inner disk and torus matches $v_{\rm QPO}$, is contrasted with the magnetospheric radius, $r_{\rm M}$, in both beaming and non-beamed models of the three PULXs. General-relativistic precession modes can exist only when $r_{\rm LT} > r_{\rm M}$.

Non-beamed models: Magnetic field estimated from spin-up/down rates

Beamed models: King, Lasota, Kluzniak 2017 - magnetospheric accretion + beaming


 Table 2. PULX Properties
 Table from Čemeljić, Kluźniak, Kundu 25.

Parameter $a_* [10^{-4}]$	ULX-7 M51 1.3	M82 X-2	NGC 7793 P13			
$a.[10^{-4}]$	1.3	2.0				
u*[IO]		2.8	9.1			
$r_{\rm LT}$ [10 km]	4.6	3.2	3.3			
Non-beamed models						
$\lambda_{ m Edd}$	20	200	50			
<i>B</i> [10 ¹² G]	0.8-70	>10	5			
$r_{\rm M}[10~{\rm km}]$	16-210	36	36			
Beaming model						
b	0.09	0.06	0.18			
$\lambda_{ m Edd}$	1.8	12	9			
<i>B</i> [10 ¹⁰ G]	0.69-19	10				
$r_{\rm M}[10~{\rm km}]$	2.1–14	6	2			

Notes. The radial distance, $r_{\rm LT}$, at which the Lense-Thirring precession frequency of the inner disk and torus matches $v_{\rm QPO}$, is contrasted with the magnetospheric radius, $r_{\rm M}$, in both beaming and non-beamed models of the three PULXs. General-relativistic precession modes can exist only when $r_{\rm LT} > r_{\rm M}$.

LT model excluded in most cases

Case 2. The Magnetic Precession Model

Formula from Lai 99, verified numerically by Pfeiffer+04

$$v(r) = \frac{\mu^2}{2\pi^3 r^7 \Omega(r) \Sigma(r) D(r)} F(\theta).$$

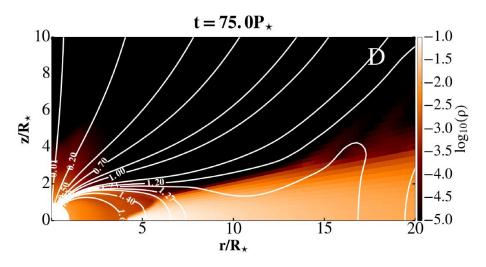
 μ : magnetic moment

 Ω : keplerian frequency

 Σ : column density

D: a measure of disk thickness

F: magnetic disk threading

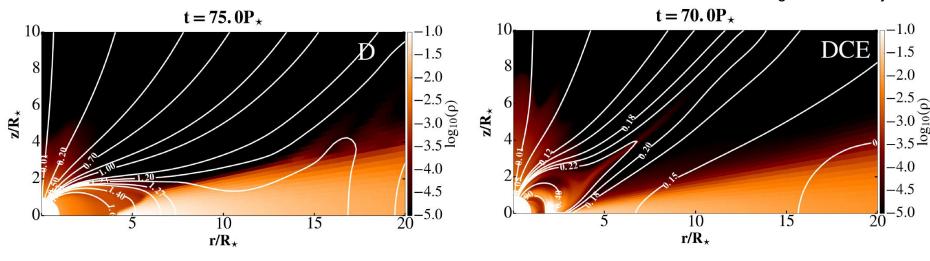

$$v(r) = \frac{\mu^2}{2\pi^3 r^7 \Omega(r) \Sigma(r) D(r)} F(\theta).$$

1. No threading of the disk by stellar field at the inner edge.

$$v(r) = \frac{\mu^2}{2\pi^3 r^7 \Omega(r) \Sigma(r) D(r)} F(\theta)$$

No threading of the disk by stellar field at the inner edge.

Figs from Čemeljić19.

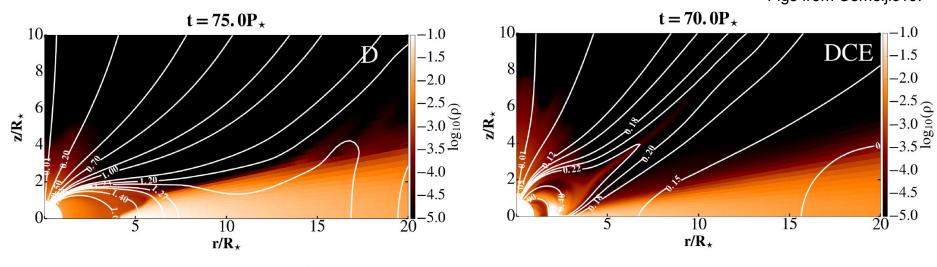


Threading

$$v(r) = \frac{\mu^2}{2\pi^3 r^7 \Omega(r) \Sigma(r) D(r)} F(\theta).$$

No threading of the disk by stellar field at the inner edge.

Figs from Čemeljić19.


Threading

No-threading

$$\nu(r) = \frac{\mu^2}{2\pi^3 r^7 \Omega(r) \Sigma(r) D(r)} F(\theta).$$

1. No threading of the disk by stellar field at the inner edge.

Figs from Čemeljić19.

Threading $f \approx 0$

No-threading $f \approx 1$

$$F(\theta) = 2f\cos^2(\theta) - \sin^2(\theta), f \approx 1$$

$$\nu(r) = \frac{\mu^2}{2\pi^3 r^7 \Omega(r) \Sigma(r)}$$

2. The Geometric factor to be close to unity.

$$D = \sqrt{2H/r} \approx 1$$

Geometrically Thick Inner Disk

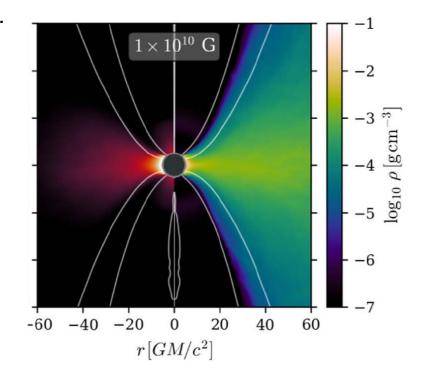


Fig from Kayanikhoo+25.

2. The Geometric factor to be close to unity.

$$D = \sqrt{2H/r} \approx 1$$

Geometrically Thick Inner Disk

3. Radial velocity proportional to azimuthal velocity: in both thin/thick disk

$$v_r = -K'r\Omega$$

$$\dot{M} = -2\pi r v_r \Sigma$$

$$\nu(r) = K' \frac{\mu^2}{\pi^2 r^5 \dot{M}}$$

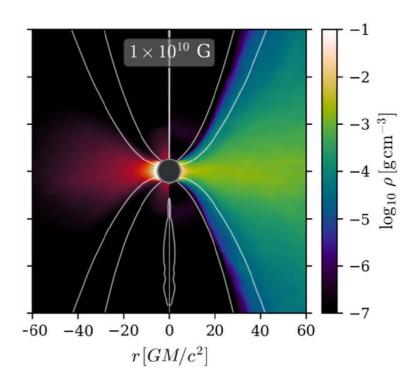
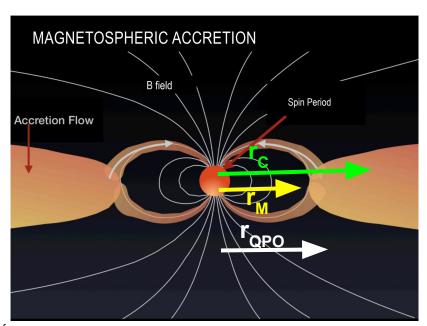
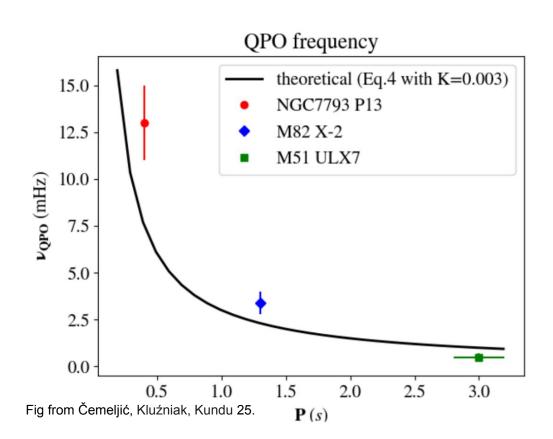



Fig from Kayanikhoo+25


$$\nu(r) = K' \frac{\mu^2}{\pi^2 r^5 \dot{M}}$$

4. Disk magnetically truncated below co-rotation radius.

$$r/d = R_{\rm in} = \tilde{\eta} \left(\frac{GMP^2}{4\pi^2}\right)^{1/3} = \eta \left(\frac{\mu^4}{GM\dot{M}^2}\right)^{1/7}$$

Result

$$\nu = K/P_*$$

1. General relativistic frame-dragging is excluded in most cases as a viable model for PULX QPOs.

- 1. General relativistic frame-dragging is excluded in most cases as a viable model for PULX QPOs.
- Dong Lai's magnetic precession acts as a viable alternative for the QPOs.

- General relativistic frame-dragging is excluded in most cases as a viable model for PULX QPOs.
- Dong Lai's magnetic precession acts as a viable alternative for the QPOs.
- 3. The final formula connecting the QPO frequency and spin period has no dependence on magnetic field or accretion rate, making it broadly applicable across sources.

- General relativistic frame-dragging is excluded in most cases as a viable model for PULX QPOs.
- Dong Lai's magnetic precession acts as a viable alternative for the QPOs.
- 3. The final formula connecting the QPO frequency and spin period has no dependence on magnetic field or accretion rate, making it broadly applicable across sources.
- 4. The QPO frequency is predicted to be around 2-3 orders of magnitude lower than the spin frequency, supported by observations.

- General relativistic frame-dragging is excluded in most cases as a viable model for PULX QPOs.
- 2. Dong Lai's magnetic precession acts as a viable alternative for the QPOs.
- The final formula connecting the QPO frequency and spin period has no dependence on magnetic field or accretion rate, making it broadly applicable across sources.
- 4. The QPO frequency is predicted to be around 2-3 orders of magnitude lower than the spin frequency, supported by observations.

We await more observations that can help us constrain the geometric factors.