

SIMULATED OBSERVATIONS OF HIGH-FREQUENCY VARIABILITY IN X-RAY BINARIES

Tomáš Stanovský¹, Debora Lančová^{1,2}, Kateřina Klimovičová¹ and Gabriel Török¹

¹Research Centre for Computational Physics and Data Processing, Institute of Physics, Silesian University in Opava, Czech Republic ²Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland

Abstract

We develop an end-to-end simulation pipeline to evaluate the detectability of high-frequency quasi-periodic oscillations (HFQPOs) in signals from black hole X-ray binaries with various space observatories. Light curves (LC) from analytic (Karas, 1996) and ray-traced (Bakala et al., 2007, 2015) hotspot models are combined with the global flux of microquasar GRS 1915+105; and photon events with SIXTE (Dauser et al., 2019), using SIMPUT (Schmid et al., 2013), for XRISM (Tashiro, 2022) and the planned newATHENA (Cruise et al., 2024) are generated. We analyze power density spectra (PDS) of observed LC to recover the fundamental and harmonic frequency peaks across models and signal-to-background ratios. The study benchmarks simulated performance against RXTE and LOFT to validate the capabilities of new missions to observe HFQPOs. We found that WFI detector onboard newATHENA robustly recovers the HFQPO fundamental and harmonics for the tested setups; XRISM/Resolve (GV closed) recovers only strong fundamentals in short exposures, with harmonics generally below detectability.

Introduction / Context

HFQPOs with frequencies of tens to a few hundred Hz probe the innermost accretion flow near compact objects. Their detectability depends on instrument timing and effective area. We target a BH microquasar GRS 1915+105, and test whether current (XRISM) and future (newA-THENA) missions recover QPO signatures. Goals: (i) construct a QPO→SIMPUT→SIXTE pipeline; (ii) simulate observations; (iii) quantify detectability thresholds vs. mission/instrument.

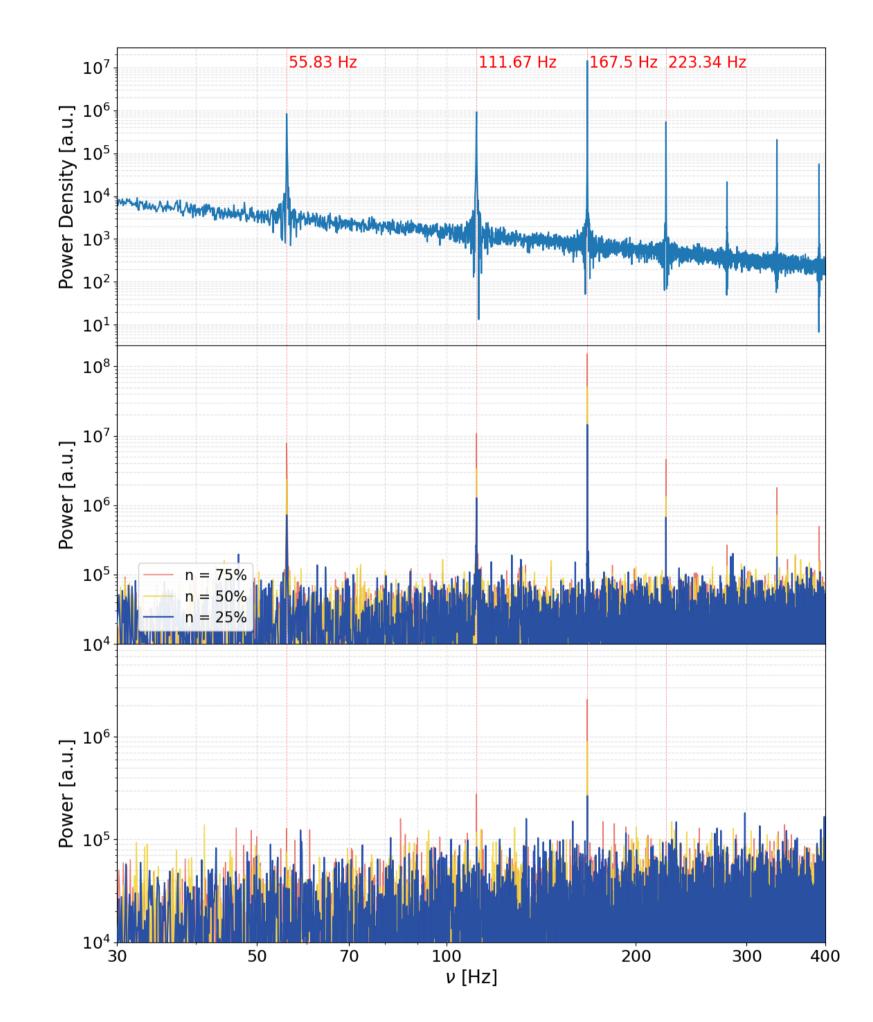
Methodology

Modeling: Generate QPO light curves (analytic and ray-traced) at centroid frequencies relevant to GRS 1915+105; mix with the global source flux approximated by fitted functions with ratio $n \in \{0.25, 0.5, 0.75\}$.

Instrument simulation: Convert LC and spectral energy distribution (SED) to SIMPUT (SRC_CAT, TIMING, SPECTRUM) and simulate with SIXTE using mission configurations for XRISM Resolve (GV closed) and newATHENA WFI Fast.

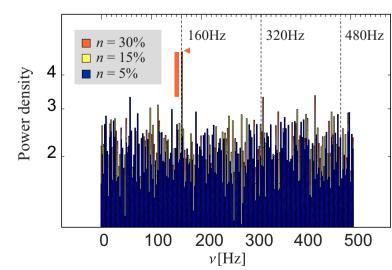
Timing analysis: Compute Leahy-normalized PDS, locate peaks at expected radial frequency (ν_r) , keplerian frequency (ν_K) , and periastron frequency (ν_p) and their harmonics; estimate significance/width; track detectability across models and n.

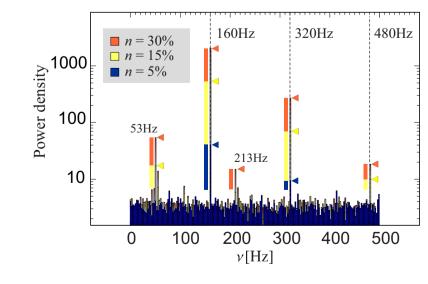
Benchmarking: Compare to RXTE and LOFT tested performance reported in Bakala et al. (2014).


Detector and observation setup

Instrument	Detector	Config	Timing resolution	Observation time	Time step
newATHENA	WFI Fast	fd_wfi_df35mm	$80~\mu \mathrm{s}$	10 s	1 ms
XRISM	Resolve	GV closed	\sim 10–12 μ s timing	10 s	1 ms

Key Results


WFI Fast: Detects the fundamental HFQPO and harmonics for the raytraced single-spot model across all tested n; the multi-spot, time-varying case remains detectable in short exposures. **Resolve (GV closed):** Recovers the fundamental only for strong n; harmonics and weaker peaks are generally suppressed, and multi-spot cases are not recovered in short exposures. **Consistency with literature:** Trends agree with RXTE/LOFT results: RXTE marginal/partial; LOFT strong. WFI Fast meets or exceeds RXTE for many settings.


Results for simulated single hotspot

Top: PDS of the combined signal before using SIXTE for n=25%. Middle: Leahy normalized PDS for the single spot with new ATHENA. Bottom: Leahy normalized PDS for the single spot with XRISM. Marked frequencies are $\nu_r=55.83$ Hz, $\nu_K=167.5$ Hz and $\nu_p=111.67$ Hz with the harmonic at 223.34 Hz, corresponding to the total mass of BH $11M_{\odot}$, radius of the hot spot of 6.75M and spin a=0 for the simulated hot spot with raytraced data.

By putting the unprocessed data to the comparison with the processed ones, we can determine the accuracy of used mission and detector for these observation, as well as ability to visualize the possibly occurring shift of frequencies.

The same hotspot setup for RXTE (left) and LOFT (right). Observation capabilities of the single spot setup from (Bakala et al., 2014). Frequency difference is caused by slightly different values of mass for the source GRS 1915+105. As can be seen by comparison of the 2 figures, newATHENA is comparable with the proposed LOFT mission in the ability to detect several key frequencies.

Discussion

Closed gate valve on Resolve shifts the effective band and reduces soft response, limiting timing capabilities of XRISM. Short exposures emphasize differences; longer integrations would improve both missions. The pipeline generalizes to other sources and models and can incorporate future response files as missions evolve.

Conclusion

We demonstrate an end-to-end simulation pipeline from QPO models to realistic observations. For the tested setups, newATHENA/WFI Fast robustly detects HFQPOs (including harmonics), while XRISM/Resolve (gate valve closed) detects only the strongest peaks. The approach is ready to extend to additional missions, exposure times, and source states.

Main references

- P. Bakala, P. Čermák, S. Hledík, et al. Extreme gravitational lensing in vicinity of schwarzschild-de sitter black holes. *CENTRAL EUROPEAN JOURNAL OF PHYSICS*, 5, 2007. ISSN 1895-1082. doi: https://doi.org/10.2478/s11534-007-0033-6.
- P. Bakala, G. Török, V. Karas, et al. Power density spectra of modes of orbital motion in strongly curved space—time: obtaining the observable signal. *Monthly Notices of the Royal Astronomical Society*, 439(2):1933–1939, Feb. 2014. ISSN 1365-2966. doi: 10.1093/mn-ras/stu076. URL http://dx.doi.org/10.1093/mnras/stu076.
- P. Bakala, K. Goluchová, G. Török, E. Šrámková, et al. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori. A&A, 581:A35, 2015. doi: 10.1051/0004-6361/201525867. URL https://doi.org/10.1051/0004-6361/201525867.
- M. Cruise, M. Guainazzi, J. Aird, F. J. Carrera, E. Costantini, L. Corrales, T. Dauser, D. Eckert, F. Gastaldello, H. Matsumoto, R. Osten, P.-O. Petrucci, D. Porquet, G. W. Pratt, N. Rea, T. H. Reiprich, A. Simionescu, D. Spiga, and E. Troja. The newathena mission concept in the context of the next decade of x-ray astronomy. *Nature Astronomy*, 9(1):36–44, Dec. 2024. ISSN 2397-3366. doi: 10.1038/s41550-024-02416-3. URL http://dx.doi.org/10.1038/s41550-024-02416-3.
- T. Dauser, S. Falkner, M. Lorenz, et al. SIXTE: a generic x-ray instrument simulation toolkit. Astronomy & Astrophysics, 630:A66, 2019. doi: 10.1051/0004-6361/201935978.
- V. Karas. Light Curve of a Source Orbiting a Black Hole: A Fitting Formula., 470:743, Oct. 1996. doi: 10.1086/177904.
- C. Schmid, R. Smith, and J. Wilms. Simput: The simulation input file format, version 1.1.0. Technical report, High Energy Astrophysics Science Archive Research Center (HEASARC), 2013. URL https://hea-www.harvard.edu/heasarc/formats/simput-1.1.0.pdf. Accessed July 2025.
- M. S. Tashiro. XRISM: X-ray imaging and spectroscopy mission. *International Journal of Modern Physics D*, 31(2):2230001, Jan. 2022. doi: 10.1142/S0218271822300014.

Author and thesis information

Full-text PDF of the thesis is available with the QR code.

Contact: tomas.stanovsky@physics.slu.cz