Exploration of Nonlinear Time-Series Features for Astronomical Light Curve Classification

SILESIAN UNIVERSITY INSTITUTE OF PHYSICS IN OPAVA

Jiri Roman Moronga¹, Jan Novotny¹, Karel Adamek¹ ¹Institute of Physics in Opava, Silesian University in Opava

Introduction

- ► The PLAsTiCC (Photometric LSST Astronomical Time-Series Classification Challenge) aims to classify simulated astronomical transients for future surveys
- ► Challenge: Extract informative features from irregularly sampled, noisy, multi-band light curves

Motivation

Research Question:

Can state space reconstruction provide complementary information for light curve classification?

- ► Time delay embedding captures dynamical structure
- ► Hypothesis: Features extracted from phase space add complementary information to standard features

Data & Preprocessing

Dataset:

- ► PLAsTiCC Kaggle challenge dataset
- ► Multiple astronomical transient classes
- ► Irregularly sampled, multi-band photometry
- ► Train samples 595006, test samples 3492890
- ► Only classes in training set were predicted

Data Preprocessing:

- ▶ Boone (2019) data augmentation and interpolation methodology [1]
- ► Gaussian Process (GP) 2D interpolation per band
- ► Training set augmentation to match test set statistics

Time Delay Embedding

State Space Reconstruction:

- ► Apply Takens' embedding theorem
- ▶ Reconstruct phase space from time series
- ► Extract nonlinear and geometrical features

Method:

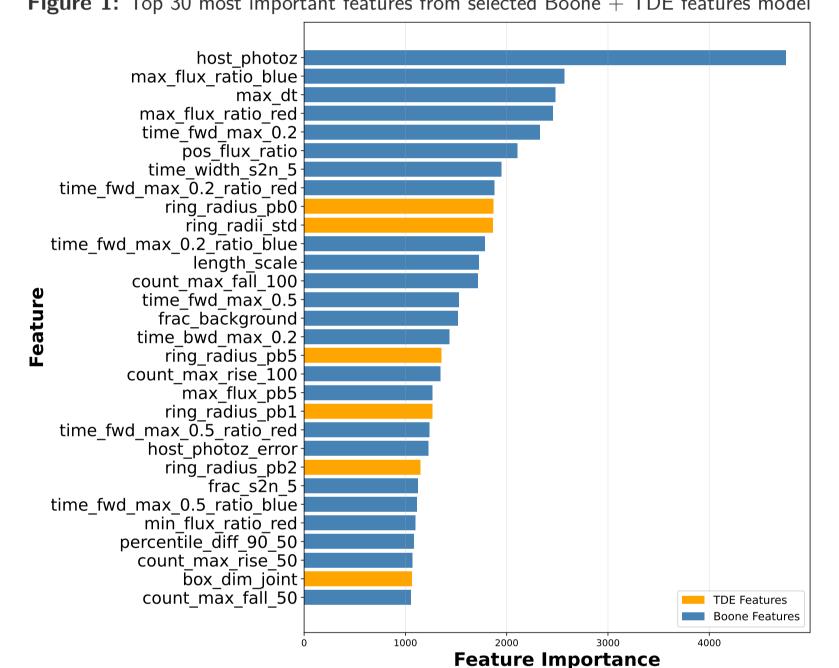
$$\mathbf{x}_{i}(t) = [x_{i}(t), x_{i}(t+\tau), x_{i}(t+2\tau), ..., x_{i}(t+(d-1)\tau)],$$

where $x_i(t)$ is a light curve signal measure in time t and in i-th passband, τ is time delay, d is embedding dimension and $x_i(t)$ is embedded vector in i-th passband's phase space. The union of the phase spaces creates joint phase space whose elements are $\mathbf{x}(t)$.

Novel Phase Space Features

Ring Radius per passband:

$$R_i = rac{1}{N_i} \sum_{k=1}^{N_i} \|\mathbf{x_i}^{(k)} - \mathbf{c_i}\|$$


where $\mathbf{c_i} = \frac{1}{N_c} \sum_k \mathbf{x_i}^{(k)}$ is the centroid. Ring Radii Standard Deviation:

$$\sigma_{R} = \sqrt{\frac{1}{6} \sum_{i=1}^{6} (R_{i} - \bar{R})^{2}}$$

Ring Ordering: Order passbands by R_i : smallest to largest radius Additional features:

- ► Fractal dimension (box-counting)
- ► Per-passband and joint phase space metrics

Figure 1: Top 30 most important features from selected Boone + TDE features model

Classification Framework

- ► Classifier: LightGBM
- ▶ 4 model variants tested
- ► Cross-validation on training set
- ► Evaluation on held-out test set

Feature Combinations

► Time delay embedding (TDE) features only

- ► Boone's features only (baseline)
- ► All Boone's and all TDE features
- ► Selected Boone's and TDE features

Results

Performance comparison (weighted multi-log loss [2]):

Model	Score
Boone's features	0.5616
TDE features only	0.6397
${\sf Boone} + {\sf TDE} \; {\sf features}$	0.5617
Selected Boone + TDE	0.5604

Top 5 Kaggle leaderboard models (evaluated on all classes):

Team / Method	Public score
Kyle Boone	0.68503
Mike & Silogram	0.69933
Major Tom	0.70016
AhmetErdem	0.70423
SKZ Lost in Translation	0.75229

Note: Our scores are computed only on training-set classes. Improving predictions on these classes enhances overall performance, as probabilities are normalized across all classes (softmax), benefiting rare or unseen classes in full PLAsTiCC evaluation.

Conclusions & Future Work

Conclusions:

► TDE features capture complementary dynamical information

Future Work:

- ► Create more informative features
- ► Explore deep learning on phase space representations

References

[1] Boone, K. (2019). Avocado: Photometric classification of astronomical transients with gaussian process augmentation. The Astronomical Journal,

[2] Hložek, R., et al. (2020). Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC). arXiv:2012.12392

Light Curve Examples and Corresponding Phase Space Reconstructions

Figure 2: GP-interpolated light curve of Object A

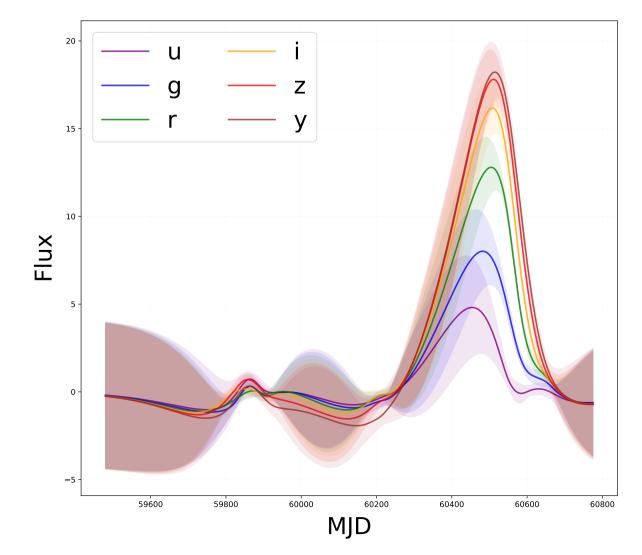


Figure 3: TDE-reconstructed phase space of Object A

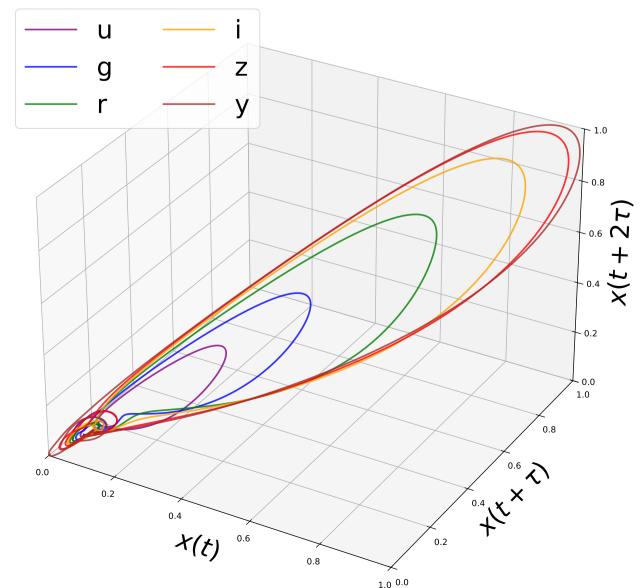
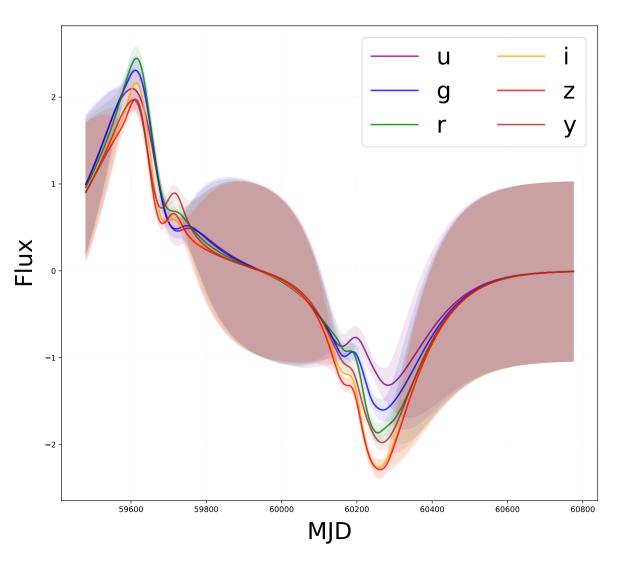
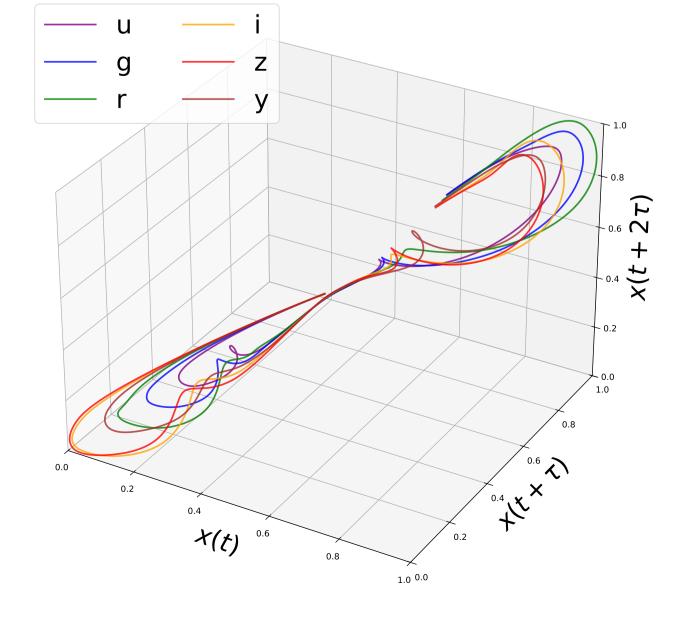




Figure 4: GP-interpolated light curve of Object B

Figure 5: TDE-reconstructed phase space of Object B

