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Dedicated to O. Semerák on the occasion of his 60th orbit around the Sun.
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What is it not about?

Usual simplification: disc as a test field on a fixed background.
→ the central black hole is supposed to be much more massive than the accreting

matter

Not necessarily true in every situation.
Some properties of the disc are sensible to the gravitational field.
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Can we include disc’s own self-gravity?
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What is it about?

An explicit exact superposition of the Schwarzschild black hole encircled by a disc.

exact (vacuum) solution to Einstein equations

Assumptions:
axially symmetric thin disc =⇒ distributional source ∝ δ(z)

zero overall net rotation =⇒ static metric

Disc stretches from the horizon to infinity, but the density is falling off quickly enough
=⇒ the field is regular everywhere (outside of the horizon) and asymptotically flat
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Weyl metric

Gravitational field of static and axially symmetric vacuum spacetimes is described by

ds2 = −e2ν dt2 + ρ2e−2ν dφ2 + e2λ−2ν(dρ2 + dz2) , (1)

where t, ρ, φ, z are the Weyl cylindrical coordinates and ν(ρ, z), λ(ρ, z).

Vacuum Einstein equations then

∆ν = 0 , λ =

∫ ρ,z

axis
ρ(ν2

,ρ − ν2
,z) dρ+ 2ρν,ρν,z dz , (2)

where
∆ is 3D Laplace operator in cylindrical coordinates (ρ, z),
the integration for λ is evaluated along some path through the vacuum region.
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Kuzmin-Toomre family of thin discs

Kuzmin (1956); Toomre (1963) obtained a family of thin discs (λ function found by
Bičák et al. (1993)) which Newtonian densities are

wn =
(2n + 1)b2n+1

2π
M

(ρ2 + b2)n+3/2 , (3)

whereM is the discs total mass and b is a constant, described by the gravitational
potential

νn = − M
(2n − 1)!!

n∑
k=0

(2n − k)!

2n−k(n − k)!

bk

rk+1
b

Pk

(
| cos θb|

)
, (4)

where Pl are the Legendre polynomials, and

r2
b := ρ2 + (|z |+ b)2 , | cos θb| :=

|z |+ b

rb
. (5)
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Inversion of the Kuzmin-Toomre dics

Performing a coordinate transformation (Kelvin transformation)

ρ→ b2ρ

ρ2 + z2 , z → b2z

ρ2 + z2 , (6)

and the respective potential transform

νn(ρ, z) −→ b√
ρ2 + z2

νn

(
b2ρ

ρ2 + z2 ,
b2z

ρ2 + z2

)
=⇒ wn(ρ) −→ b3

ρ3wn(b2/ρ) , (7)

results in “annular” disc of a density

w i
n =

(
n + 1/2

n

)
Mb

2π
ρ2n

(ρ2 + b2)n+3/2 , (8)

where the multiplication constant is chosen in a way thatM is still the total mass.
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Inversion of the Kuzmin-Toomre dics
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The resulting potential (after a suitable resummation) then

ν i
n = −

(
n + 1/2

n

)
M

(1 + 2n)!!

n∑
k=0

(2n − k)!

2n−k(n − k)!
2F1(1 + k, k − n; k − 2n; 2)

(−b)k

rk+1
b

Pk

(
| cos θb|

)
,

where 2F1 is the hypergeometric function.
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The second metric function λ

Just like for the original Kuzmin-Toomre solution (Bičák et al., 1993), the second
metric function can be analytially obtained integrating (2)

λi
n = −

(
n + 1/2

n

)2 M2 sin2 θb[
(1 + 2n)!!

]2 n∑
k,l=0

Bk,l
(−b)k+l

rk+l+2
b

Pk,l(θb) , (9)

where

Bk,l ≡
(2n − k)!(2n − l)!

22n−k−l(n − k)!(n − l)!(k + l + 2)
2F1(1 + k , k − n; k − 2n; 2) 2F1(1 + l , l − n; l − 2n; 2) ,

Pk,l ≡ (k + 1)(l + 1)PkPl + 2(k + 1)| cos θb|PkP
′
l − sin2 θbP

′
kP
′
l ,

P ′k ≡
d

d| cos θb|
Pk(| cos θb|) .
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Vogt-Letelier discs

Vogt & Letelier (2009) did a superposition of the original Kuzmin-Toomre discs

ν(m,n) = W (m,n)
n∑

k=0

(−1)k
(
n

k

)
νm+k

2m + 2k + 1
, (10)

where W (m,n) is a constant. The disc’s Newtonian density

w (m,n) = W (m,n)Mb2m+1

2π
ρ2n

(ρ2 + b2)m+n+3/2 . (11)

The inverted Kuzmin-Toomre discs are the special case of this family when m = 0.
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Ressumation of the potential

Fixing the constant W (m,n), so the total mass of the disc isM, the Vogt-Letelier
potential can be recast into a form

ν(m,n) = −(2m + 1)M
(
m + n + 1/2

n

)m+n∑
j=0

Q(m,n)
j

bj

r j+1
b

Pj(cos θb) , (12)

where

Q(m,n)
j =


2j−m(2m−j−1)!!
(2m+1)(m−j)! 3F2

(
j − n, j+m+1

2 , j+m+2
2 ; j + 1, 2j+2m+3

2 ; 1
)

if j ≤ m

(−1)j−mj!
(2j+1)!!

(
n

j−m
)
3F2

(
j+1
2 , j+2

2 , j −m − n; 2j+3
2 , j −m + 1; 1

)
if j > m ,

and 3F2 are the generalized hypergeometric functions.
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The second metric function λ

The second metric function can be again obtained

λ(m,n) = −(2m + 1)2
(
m + n + 1/2

n

)2

M2 sin2 θb

m+n∑
k,l=0

B(m,n)k,l

bk+l

rk+l+2
b

Pk,l(θb) , (13)

B(m,n)k.l =
Q(m,n)

l Q(m,n)
k

k + l + 2
, (14)

while the polynomials Pk,l are the same as for the inverted Kuzmin-Toomre discs (9).

Petr Kotlařík Black hole encircled by a thin disc



Table of Contents

1 Weyl metrics, Kuzmin-Toomre thin discs and their inversion

2 Vogt-Letelier discs

3 Superposition with a black hole

4 Physical properties of the black-hole–disc spacetimes

Petr Kotlařík Black hole encircled by a thin disc



The total gravitational potential

The discs have an “annular” character =⇒ suitable for a superposition with a central
black hole.

The Schwarzschild black hole in Weyl coordinates (a solid finite rod of the mass M and
lenght 2M)

νSchw =
1
2

ln
d1 + d2 − 2M
d1 + d2 + 2M

, λSchw =
1
2

ln
(d1 + d2)2 − 4M2

4d1d2
. (15)

where d1,2 ≡
√
ρ2 + (|z | ∓M)2.

The Laplace equation is linear =⇒ the total gravitational potential is a simple sum

ν = νSchw + νdisc . (16)
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The second metric function λ

The metric function λ does not superpose that simply. In fact, we denoted

λ = λSchw + λdisc + λint , (17)

where λSchw, λdisc are contributions from the black hole and the disc, and

λint,ρ = 2ρ(νSchw,ρνdisc,ρ − νSchw,zνdisc,z) , (18)
λint,z = 2ρ(νSchw,ρνdisc,z + νSchw,zνdisc,ρ) . (19)

Notice that (18), (19) are linear in νdisc, hence λint satisfies the same recurrence
relations as νdisc. Namely

λ
(0,n+1)
int = λ

(0,n)
int +

b

2(n + 1)

∂

∂b
λ
(0,n)
int , λ

(0,0)
int = −M

rb

(
d1

b + M
− d2

b −M

)
− 2MM

b2 −M2 ,

(2m + 1)(2n + 3)

2m + 2n + 3
λ
(m+1,n)
int = λ

(m,n)
int +

4m(n + 1)

2m + 2n + 3
λ
(m,n+1)
int − b

∂

∂b
λ
(m,n)
int .
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The discs physical properties

Two simple physical interpretations of the disc are possible
a single component ideal fluid with a certain surface density (eν−λσ) and

azimuthal pressure (eν−λP) which keeps the orbits at their radius
two identical counter-orbiting dust components with proper surface densities

(σ+ = σ− ≡ σ/2) following circular geodesics

Both characteristics σ and P are encoded in the jump of the normal derivative of the
gravitational potential

σ + P =
ν,z(z = 0+)

2π
= w(ρ) , P =

ν,z(z = 0+)

2π
ρν,ρ = w(ρ)ρν,ρ . (20)
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Circular velocity

The two-streams interpretation is possible where the physical speed v of freely rotating
particles with respect to a local static observer acquires time-like values (0 ≤ v < 1).

This time-like condition also covers the energy conditions and the non-negativity of the
relativistic densities and azimuthal pressures.

For such speed, in the Weyl-type spacetimes, it is

v2
+ ≡ v2

− ≡ v2 =
σ

P
=

ρν,ρ
1− ρν,ρ

. (21)
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Coordinate vs geometrical measures

The coordinate statements have to be taken with some caution (although Weyl
coordinates represented some spacetime features adequately).

We should check the physical properties of the discs also in terms of some invariant
measures like

circumferential radius rcf := ρe−ν =⇒ azimuthal circumference =

∫ 2π

0

√
gφφ dφ = 2πrcf ,

proper radial distance from the axis rprop :=

∫ ρ

0

√
gρρ dρ =

∫ ρ

0
eλ−ν dρ .
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Fig. 1: Inverted Kuzmin-Toomre family (n = 1, 2, . . . , 8) is depicted. We chose the mass of the
discs M = 3M and b = 10M.
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Fig. 2: Inverted Kuzmin-Toomre family (n = 1, 2, . . . , 8) is depicted. We chose the mass of the
discs M = 3M and b = 10M.

Similar plots can be obtained for the whole Vogt-Letelier family of discs.
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Summary

We obtained full metric (both non-trivial metric functions) describing the whole
family of Vogt-Letelier discs as well as the full metric describing their superposition
with a central black hole.
Both metric functions are given analytically and in closed-form.
Some basic physical properties of the discs are checked against the radial
coordinate, circumferential radius and the proper distance.
Soon in ApJ.
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Thank you for your attention.
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Question time!
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The black hole horizon

The intrinsic geometry of the black-hole horizon changes due to the presence of the disc.

At any given coordinate time t = const, the horizon is a 2D-surface which can be
isometrically embedded into Euclidean 3-space (we used method by Smarr (1973)).
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Fig. 3: A section (φ = const) of the isometric embedding of the black-hole horizon distorted by the
3th order inverted Kuzmin-Toomre disc with b = 2M. The disc masses M = 5M, 7.5M, 10M, . . . 25M.
Both axes are in units of M.

Petr Kotlařík Black hole encircled by a thin disc


	Weyl metrics, Kuzmin-Toomre thin discs and their inversion
	Vogt-Letelier discs
	Superposition with a black hole
	Physical properties of the black-hole–disc spacetimes
	Reference

