

The IXPE view on the accreting stellar-mass Black Holes: Measurement of Cyg X-1 X-ray polarization properties in its hard state

Michal Dovčiak

Krawczynski, Muleri, Veledina, Rodriguez Cavero, Svoboda, Ingram, Matt, Garcia, Loktev, Negro, Poutanen, Kitaguchi, Podgorný, Rankin, Zhang on behalf of the whole IXPE team

RAGTIME, 24th Relativistic Astrophysics Group meeting 10-14/10/2022, Silesian University, Opava, Czech Republic

Components:

- black hole
- star companion
- accretion disc
- corona
- winds
- jets

Credit: G Pérez Díaz (IAC)

Spectral states: • high/soft • low/hard

very high/steep power-lawintermediate

XRB CENSUS

- Only about 10 sources are persistent
- From 77 transients only around 14 had at least 2 outbursts

McClintock, Narayan & Steiner (2014)

CYG X-1

- Distance: $2.22^{+0.18}_{-0.17}$ kpc Inclination: $27.1^{\circ} \pm 0.8^{\circ}$
- Companion mass: $40.6^{+7.7}_{-7.1} M_{\odot}$
- Period: $5.6 \,\mathrm{day}$
- BH Mass: $21.2\pm2.2\,M_{\odot}$
- BH spin: $\gtrsim 0.92$

McClintock, Narayan & Steiner (2014)

CYG X-1

- one of the brightest X-ray sources on the sky
- long-term hard state

Cyg X-1 MAXI light curve

OBSERVATIONAL CAMPAIGN

- Observations:
 - IXPE: 242 ksec (15-21/5)
 - NuSTAR: 42 ksec (18-21/5)
 - NICER: 87 ksec (15-21/5)
 - SWIFT: 54 ksec (15-20/5)
 - INTEGRAL: 196 ksec (15-20/5)
 - ART-XC: 171 ksec (15-19/5)
 - optical telescopes with polarimetry (DIPol-2, RoboPol)

- Additional ToO
 - to check variability of polarization
 - IXPE: 100 ksec (20-21/6)
 - NuSTAR: 40 ksec
 - NICER: 40 ksec

- High energy polarization (15-80 keV)
 - XL-Calibur: 168 ksec

IMIGANING X-RAY POLARIMETRY EXPLORER

IXPE - NASA and ASI mission

- SMEX-14, ~200 million USD (8 years ago)
- Selected on 3rd January 2017 (5 years ago)
- Launched on 9th December 2021

IXPE data sheet

- 3 mirror modules + 3 gas pixel detectors
- imaging and polarization capabilities
- effective arrea: 525 cm² (3-6 keV)
- angular resolution: 28 arcsec
- field of view: 12.9 arcmin square
- energy resolution: 0.57 keV @ 2 keV
- useful energy range: 2 8 keV

- High variability
- Mean IXPE Flux:
 - $5.2 \times 10^{-9} \text{ ergs cm}^{-2} \text{ s}^{-1}$

217 mCrab

nardness ratio

count rate [counts/s] 20 15 10 0.8 5 0.6 0 2 200 300 400 500 0 100 time [ks] Use or disclosure of the information contained in this presentation and marked by the non-disclosure pictograms is competition sensitive and subject to restrictions.

total 2-8keV count rate

hardness ratio 4-8kev to 2-4keV

IXPE Imaging X-Ray

Polarímetry Explorer

DU1 2-4keV count rate < 13 cps

DU1 2-4keV count rate > 16 cps

30

25

NORMALIZED STOKES PARAMETERS

POLARIZATION DEGREE & ANGLE

2-8 keV:

PD =
$$(4.0 \pm 0.2)$$
%
PA = (-21 ± 1) deg

POLARIZATION DEGREE & ANGLE

Use or disclosure of the information contained in this presentation and marked by the non-disclosure pictograms is competition sensitive and subject to restrictions.

No highly significant energy dependence of pol. properties.

SUPERORBITAL VARIABILITY

Superorbital precession of the inner accretion disc?

- different X-ray, optical and radio instruments indicate the presence of a superorbital periodicity (Poutanen, Zdziarski & Ibragimov 2008) – 73.5 days
- precession of the accretion disc?
- we have performed IXPE observation 1 month later to test this scenario

POLARIZATION DEGREE & ANGLE

Polarization properties of ToO

 $(3.63 \pm 0.30)\%$, $(3.87 \pm 0.34)\%$, $(5.03 \pm 0.41)\%$

Use or disclosure of the information contained in this presentation and marked by the non-disclosure pictograms is competition sensitive and subject to restrictions.

§ 15

ALIGNMENT WITH RADIO JET

The figure shows radio jet. Figure axes extend 10 billion km.

IXPE emission probes 600 km region, more than 7 magnitudes smaller region!

ALIGNMENT WITH RADIO JET

If polarization is perpendicular to inner accretion flow than the jet is perpendicular to inner accretion disc

SPECTRO-POLARIMETRIC FIT

IXPE + NuSTAR + NICER + INTEGRAL in 2-250 keV

Spectral components:

- cross-calibration (mbpo)
- Galactic absorption (tbabs)
- thermal emission (diskbb, < 1%) unpol.
- Comptonization (nthcomp, 90%) pol.
- relativistic reflection (relxillcp, 10%) unpol.
- Distant reflection (xillvercp, <1%) unpol.

 $PD = 3.63 \pm 0.26\%$ $PA = -20^{\circ}.5 \pm 2^{\circ}.1 \chi^2/dof = 2380.4/2415.$

ORIGIN OF POLARIZATION

Scattering-Polarization

http://sites.sinauer.com/animalcommunication2e/chapter05.02.html

Use or disclosure of the information contained in this presentation and marked by the non-disclosure pictograms is competition sensitive and subject to restrictions.

Synchrotron-Polarization

SCATTERING & CORONA GEOMETRY

• Slab sandwich corona

 \rightarrow consistent PD and PA but for incl. > 65 deg \rightarrow but Haardt & Maraschi (1991)

• Spherical corona

 \rightarrow low polarization degree (Schnittman & Krolik 2010)

Hot inner accretion flow (truncated disc)

 → consistent PD and PA but for incl. > 45 deg
 → internal synchrotron seed photons

Patchy corona

 \rightarrow low polarization degree (Schnittman & Krolik 2010)

- Lamp-post corona (spherical, cone-shaped)
 - \rightarrow low PD or horizontal PA or PD decreases with energy
 - ightarrow various heights, speeds and disc truncation tried

HIGH INCLINATION OF INNER ACCRETION DISC?

Higher inclination is needed

- Bardeen and Petterson effect with highly spinning BH
 - warping of the inner accretion disc into the BH equatorial plane (Bardeen, Petterson & Jacobus 1975)
 - some analyses of reflected Cyg X-1 spectra give high disc inclinations (Tomsick et al. 2014, Parker et al. 2015, Tomsick et al. 2018)
- **Outflowing corona** with mildly relativistic velocities (Poutanen et al. in prep.)

CAN REFLECTION DOMINATE POLARIZATION?

- Reflection
 - \rightarrow contributes by 10%
 - → to dominate, it would have to be polarized at > 40% level
 - \rightarrow reflection is polarized < 40%

(Dovciak et al. 2011, Podgorny et al. in prep.)

Polarization is dominated by the power-law component!

SYNCHROTRON MAGNETIC FIELD STRUCTURE

Could synchrotron jet emission explain

the polarization properties?

SYNCHROTRON MAGNETIC FIELD STRUCTURE

XPE

Polarímetry Explorer

Imaging **X**-Ray

SYNCHROTRON MAGNETIC FIELD STRUCTURE

- PA parallel with jet \rightarrow toroidal magnetic field
- PD << than the theoretical maximum for unidirectional magnetic field (Lyutikov, Pariev & Gabuzda 2005)

• synchrotron requires yet again large inclination angle

FUTURE PLANS

- Deeper analysis of Cyg X-1 data from observational campaign (timing)
- Other bright persistent sources in hard state (e.g. Cyg X-3)
- Bright persistent sources in soft state (e.g. LMC X-1, 4U1957+115, LMC X-3, Cyg X-1, GRS1915+105)
- GRS 1915+105 in obscured state
- Outburst of transient source 4U1630-47 (e.g. GX 339-4, GRO 1655-40)
- Other interesting sources (e.g. SS433, ...)

- IXPE observed currently the brightest persistent XRB Cyg X-1 in its hard state
- IXPE detected unexpectedly high PD in 2-8 keV band: 4.0 ± 0.2 % with PA parallel with radio jet
- corona seems to be extended in disc plane
- Comptonization models: incl > 45 deg; Synchrotron models: incl > 60 deg
- warped inner disc misaligned with orbital axis (Bardeen Petterson effect)
- or corona is outflowing with mildly relativistic velocities

