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Neutron stars as fundamental physics labs

Neutron stars (NSs) are unique environments to test fundamental physics,
including nuclear physics. They squeeze more than 1.4 M� into a Bogotá
city-size volume, providing densities beyond the nuclear saturation limit. Thus
they offer natural ‘labs’ to probe the nuclear EOS.

The relation between mass (M ) and radius (R) of NSs depends on the EOS. In
principle, one can probe the EOS by measuring M and R independently [Guver

and Ozel (2013); Steiner, Lattimer, and Brown (2010); Lattimer and Steiner (2014)]. For
instance, data from the missions NICER and XMM-Newton, has allowed to
estimate M and R of a pulsar to ∼ 5% accuracy [Miller et al. (2021)].

Other important observables of NSs, which could be useful to test nuclear
physics, are the moment of inertia I, to be measured from observations of the
double pulsar [Kramer and Wex (2009)]; and the tidal deformability (Love number κ2)
which is encoded in GWs from binary NSs mergers [Hinderer (2008); Damour and

Nagar (2009); Hinderer et al. (2010)].



An ‘exact’ modified Tolman VII solution

Introduction

Interior solutions for NSs
To connect NS observables to their interior structure, one must solve Einstein’s
equations for a given EOS. Due to the complexity of the field equations, most of
the solutions are numerical. However, some analytic solutions exist that are used
to ‘mimic’ NSs, e.g., Schwarzschild’s interior solution [Schwarzschild (1916)],
Buchdahl [Buchdahl (1967)], and Tolman VII (T-VII) solution [Tolman (1939)]. Analytic
NSs solutions are useful to have a better understanding of NSs physics.

About T-VII, Tolman wrote: “The dependence of p on r [...] is so complicated that
the solution is not a convenient one for physical considerations” [Tolman (1939)].
The advent of modern computing has allowed further studies of the T-VII solution.
It turns out that this solution describes relatively well the interior of realistic NSs
[Lattimer and Prakash (2001)].

Further studies of T-VII: quasi-normal modes and associated universal relations
[Tsui and Leung (2005); Tsui, Leung, and Wu (2006)], geometric structure [Neary, Ishak,

and Lake (2001); Raghoonundun and Hobill (2015)], tidal Love numbers [Postnikov,

Prakash, and Lattimer (2010)], radial stability [Negi and Durgapal (2001); Moustakidis

(2017)], extension to scalar-tensor gravity [Sotani and Kokkotas (2018)], trapping of
null geodesics [Stuchlı́k et al. (2021); Stuchlı́k and Vrba (2021)].
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A modified T-VII solution
Recently Jiang and Yagi, 2019 proposed a modified Tolman VII (MT-VII) solution
which seems to describe more accurately the realistic numerical solutions for
NSs. The MT-VII introduces a parameter α to allow the energy density to be a
quartic function of r. However, after this modification, not all of Einstein’s
equations are solvable exactly, thus certain approximate relations were proposed.

Further studies of MT-VII: Analytic I-Love-C relations [Jiang and Yagi (2020)], radial
stability [Posada, Hladı́k, and Stuchlı́k (2021)]. In the latter, we found that MT-VII is
radially stable in a wide parameter space region (C, α). However, a further study
of MT-VII showed that, for certain values of (C, α), there appear regions with
negative pressure and, consequently, negative tidal deformability. This is in
conflict with what is expected for a realistic NS.

Objective

To alleviate the shortcomings of the MT-VII solution, we propose here an ‘exact’
modified Tolman VII solution (EMT-VII) by solving numerically Einstein’s equations for
the MT-VII energy density profile. In contrast with MT-VII, our solution shows positive
pressure everywhere inside the star, and also a positive tidal Love number. We also
provide some constraints based on GW170817.
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Tolman’s method for interior solutions

We assume a spherically symmetric matter distribution, with line element,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2).

We approximate the internal configuration as a perfect fluid with EMT

Tµν = (ε+ p)uµuν + pgµν ,

where ε is the energy density, p is the pressure and uν = dxν/dτ is the four-velocity.
With these assumptions, Einstein’s equations Gµν = 8πTµν read

d
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)
+
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2r
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(
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= 4πr2ε ,

where m(r) = (mass enclosed in the radius r). We can connect m(r) and grr as

e−λ(r) ≡ 1−
2m(r)

r
.

We close the ‘Einstein system’ by imposing an equation of state (EOS), i.e., p = p(ε). In a more

mathematical approach, Tolman, 1939 chose conveniently eλ and eν , so the system can be

integrated analytically. With this approach, Tolman rediscovered several solutions (Schwarzschild’s

interior sol., de Sitter, Einstein’s Universe). We focus on the so-called, Tolman VII solution (TVII).
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Tolman VII (T-VII) solution

The basic ingredients of the T-VII solution are the following

εTol = εc(1− x2); mTol =
M

2
x3(5− 3x2) ,

pTol =
εc

15

√12e−λTol

C
tanφTol − (5− 3x2)

; φTol = CTol
2 −

1

2
log

x2 −
5

6
+

√
5e−λTol

8πεcR2

,
e−λTol = 1− 8π

15
εcR

2x2(5− 3x2); eνTol = CTol
1 cos2 φTol .

CTol
1 and CTol

2 are integration constants, x ≡ r/R where R is the stellar radius, εc is the
central energy density, and C ≡M/R is the compactness. Important constraints:

pc →∞ when C = 0.386.

cs < 1 for C < 0.270.

DEC is valid for C < 0.3351.
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Modified Tolman VII (MT-VII) solution

Jiang and Yagi, 2019 (JY) proposed a modification to the T-VII energy density profile

εmod = εc
[
1− αx2 + (α− 1)x4] ; e−λmod = 1− 8πεc(Rx)2

[
1

3
− α

5
x2 +

(α− 1)

7
x4

]
.

The grr metric component, and p, can be found analytically as

p̃mod =
1

8π

[
e−λmod

(
ν′mod

r
+

1

r2

)
−

1

r2

]
,

For the MT-VII ansatz, it is not possible to obtain an exact solution for gtt. Moreover, p̃mod gives p̃c
around 20% off from numerical results, and also becomes negative near the surface. Thus, JY
proposed the following approximate expressions for eν and p(r)

eνmod = Cmod
1 cos2 φmod; φmod = Cmod

2 −
1

2
log

x2 −
5

6
+

√
5e−λTol

8πR2εc

 ,

pmod(x)

εc
=

(
e−λTol

10πεcR2

)1/2

tanφmod +
1

15
(3x2 − 5) +

6(1− α)

16πεcR2(10− 3α)− 105
.

Parameters of the MT-VII solution: (C, R, α) [or, (M,R,α)]. These parameters are related

by the condition m(R) = M , such that εc = 105C/8πR2(10− 3α).
Allowed values of α ∈ [0, 2]

I-Love-C [Jiang and Yagi (2020)], radial stability [Posada, Hladı́k, and Stuchlı́k (2021)].
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Analysis of the MT-VII solution
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‘Exact’ modified Tolman VII (EMT-VII) solution

Considering the drawbacks of the MT-VII model,

we propose an ‘exact’ MT-VII (EMT-VII) solution,

by solving numerically Einstein’s equations for gtt
and p(r), given the MT-VII energy density εmod

[Posada, Hladı́k, and Stuchlı́k (2022)].
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EMT-VII vs MT-VII

The results presented, so far, are specific to one configuration. We show here the
differences in the whole (C, α) parameter space (PS) by computing the
root-mean-square error (RMSE) as

(RMSE) =

√√√√∫R
0

[
y(EMTVII) − y(MTVII)

]2
dr∫R

0 y(EMTVII)]2 dr
.

The RMSE, of the metric component gtt, for the
EMTVII and MTVII solutions in the PS (α, C).

The RMSE, of the radial pressure profile, for the
EMTVII and MTVII solutions in the PS (α, C).



An ‘exact’ modified Tolman VII solution

Tidal deformabilty

Tidal Love number

The (‘electric-type’) Love number k2, or alternatively the tidal deformability Λ,
provides a connection between the tidal fields εij and the induced quadrupole
moments Qij [Hinderer (2008); Damour and Nagar (2009); Binnington and Poisson (2009);

Poisson (2021)]

Qij = −2κ2R
5

3
εij ≡ −Λεij .

It is conventional to introduce Λ̄ = Λ/M5 = 2κ2/(3C5), as employed in the
context of the I-Love-Q relations for NSs [Yagi and Yunes (2013)].

κ2 =
8

5
(1− 2C)2C5 [2C(hR − 1)− hR + 2]

{
2C
[
4(hR + 1)C4

+ (6hR − 4)C3 + (26− 22hR)C2 + 3(5hR − 8)C − 3hR + 6
]

+ 3(1− 2C)2 [2C(hR − 1)− hR + 2] log(1− 2C)
}−1

,

where hR = [(r/H)dH/dr]r=R.

The Love number is strongly sensitive to C.

Tidal Love numbers have been computed for various EOS for NSs [Hinderer (2008);

Damour and Nagar (2009); Hinderer et al. (2010); Postnikov, Prakash, and Lattimer (2010)].



An ‘exact’ modified Tolman VII solution

Tidal deformabilty

Stationary perturbation equation

Even-parity, stationary perturbations of a barotropic star are characterised by the
following:

1 Metric perturbations reduce to two functions H = H0 = H2, and K
2 Fluid perturbations are represented by a thermodynamic quantity h:
δh = δp/(p+ ε)

3 Both are related via δh = − 1
2
H

Metric perturbations satisfy the following ODE (Lindblom, Mendell, and Ipser, 1997)

d2H

dr2
+ C1(r)

dH

dr
+ C0(r)H = 0,

with coefficients

C1(r) =
2

r
+ eλ

[
2m(r)

r2
+ 4πr(p− ε)

]
,

C0(r) = eλ
[
−
l(l + 1)

r2
+ 4π(ε+ p)

dε

dp
+ 4π(5ε+ 9p)

]
−
(
dν

dr

)2

.

What about Love? Take the equilibrium configuration and integrate the perturbation
equation for H from the center outwards. Then, determine the value of the logarithmic
derivative at the surface.
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Tidal deformabilty

Love number of EMT-VII
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For a NS with M = 1.4M� and R = 11.4 km, frac. errors go from ∼ 1% for α→ 0, up to

∼ 10% for α = 2.

In the regime considered by (JY), α ∈ [0.4, 1.4], C ∈ [0.05, 0.35], diff. in Love are relatively

low between MT-VII and EMT-VII. However, for α = 1.6 with C > 0.25, the differences grow.

From our EMT-VII model, for α = 0.2,→ C = 0.235, while for α = 2,→ C = 0.205. This

small diff. would give a maximum GW frequency fmax ∼
√
GM/(π2R3), around 18% larger

for the NS with α = 0.2 .
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Final Remarks

Although the MT-VII model, for certain values of (C, α), fits well with the realistic
EOS for NSs, we found that it predicts regions with negative pressure near the
surface. As a consequence, the MT-VII model predicts a negative tidal Love
number for certain configurations.

We propose here the semi-analytical EMT-VII solution, by solving Einstein’s
equations for the quartic energy density profile introduced by Jiang and Yagi, 2019.
Our solution shows positive pressure, and positive tidal deformability, in the whole
allowed regime of (C, α), which is consistent with what is expected for realistic
NSs.

Some ideas for further studies of the EMT-VII model: stability, trapping of null
geodesics, extension to slow rotation, I-Love-C relations.
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